

Robby, the Soda-Can-Collecting Robot, has the job of cleaning up his environment by collecting empty
soda cans. Robby’s world consists of 100 site locations laid out in a 10 x 10 grid. Various sites have been
littered with soda cans (but with no more than one can per site). Robby isn’t too intelligent, and his
eyesight isn’t that great. From wherever he currently is, he can see the contents of one adjacent site in the
north, south, east, and west directions, as well as the contents of the site he’s currently in. A site can be
empty, contain a can, or be a wall (which surrounds Robby’s world).

For each cleaning session, Robby can perform exactly 200 total actions. Each action consists of one of the
following seven choices: move north, move south, move east, move west, move in random direction, stay
put, or pick up can. Each action may generate a reward or punishment. If Robby is in the same site as a
can and picks it up, he gets a reward of 10 points. However, if he bends down to pick up a can at a site
where there is no can, he is fined 1 point. If he crashes into a wall, he is fined 5 points and bounces back
into the current site. Clearly, Robby’s reward is maximized when he picks up as many cans as possible,
without crashing into any walls or bending down to pick up a can when no can is there. Your assignment
is to write code for a learning algorithm (reinforcement learning, neural networks, or genetic algorithms)
that learns the control strategies for Robby the Robot.

A. SETTING UP EVERYTHING. The world map “Can.wld” in which Robby will navigate is defined
by the following parameters:
Origin x_position y_position
 Defines the starting (x,y) position of the robot
Can x_position y_position
 Defines the (x,y) location of a can

.

B. ENCODING OF STRATEGIES
Robby’s learned strategy should be encoded as a look-up table that gives, for every possible state, the
action he should take when in that state. There are five different sites (north, south, east, west, current),
each with three possible types of contents (wall, empty, can). Thus there are 35 = 243 possible situations
in which the robot can be in (and which need an action defined). Given this construct, a part of a learned
strategy is as shown:

ECE	
 8843	
 	
 	
 	
 	
 	
 	
 	
 	
 Fall	
 Semester,	
 2011	

	

HOMEWORK	
 3	
 –	
 LEARNING	
 ROBOT	
 CONTROL	
 STRATEGIES	

	

	

Assigned:	
 Oct.	
 26,	
 2011	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Due:	
 Nov.	
 9,	
 2011	
 –	
 3:05pm	

Origin 0 0
Can 0 1
Can 0 3
Can 0 4
Can 1 3
Can 1 6
Can 2 2
…
Can 9 1
	

For example, Robby’s situation in the above example is:

North South East West Current Site
 Wall Empty Can Wall Empty

To decide what to do next, Roby simply looks up his situation in his strategy table and finds the
corresponding action to take. Thus, the strategy employed for this situation would be: MoveEast

C. AN EXAMPLE SOLUTION – SETTING UP THE PROBLEM
Imagine you decide to utilize genetic algorithms for your learning algorithm. In this case, the
“chromosome” to be evolved by the GA could just be a listing of the 243 actions (where each gene
represents a situation). If the actions are numbered as:
0: move north
1: move south
2: move east
3: move west
4: move in a random direction
5: stay put
6: pick up can
Then the chromosome representing the strategy in the example above would be: 0643…2…5

D. TEST COMPLETE SYSTEM. Test your learning algorithm using the world above. Run your code
5 times (with Robby starting at different starting locations) and calculate your performance score (i.e.
reward after 200 actions).

E. WRITE UP THE FOLLOWING (submit as a single pdf file called yourlastname.pdf): 1) A
description of your learning algorithm, including its parameter values (for example: GA population size)
[description should be no more than half-page in length], 2) The look-up table created by the learning
algorithm based on the world above, 3) The performance score for your five runs and the starting
locations utilized, and 4) A list of the sequence of actions (for one run) that illustrate your program’s
ability for Robby to clean its environment (remember to provide the starting location).

F. SUBMISSION. For homework credit, turn in your code, a README documenting how to run your
code, and your .pdf writeup.

MoveNorth	

PickUpCan	

MoveRandom	

MoveWest	

	

MoveEast	

	

	

StayPut	

