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Abstract - Picking up the trash of people’s homes in a given 
neighborhood is not the most appealing job. With the advances in 
technology it is now a possibility to use autonomous mobile 
robots to traverse a neighborhood with the main goal of 
retrieving the trash from every house. To prove that this idea is 
indeed possible and viable, we created a simple small scaled 
neighborhood. We programmed the commercially available 
ActivMedia’s Amigobot with a lane detection algorithm to stay 
inside the road, computer vision algorithms to obey traffic 
signals, and with an algorithm to detect simulated trash 
containers in order for the robotic arm to pick it up. This paper 
presents the individual components of the projects together with 
the conclusions of our work. 
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I. INTRODUCTION 
 

Autonomous trash collection is indeed a viable alternative 
for our society. The advances in technology allow us to have a 
team of autonomous mobile robots collaborate with each other 
with the main goal of following a predetermined path in a 
given neighborhood and picking up the houses’ trash. Having 
autonomous mobile robots perform these simple tasks is more 
cost efficient rather than having to pay a human to do it. The 
initial investment of a system like this may be expensive, but in 
the long run it’s more expensive to pay a human’s salary and 
health benefits. 

 
It is the purpose of this paper to demonstrate the concept 

behind autonomous trash collection. A simple small scaled 
neighborhood was drawn with chalk and the commercially 
available mobile robot Amigobot was used to traverse said 
neighborhood. The idea is to equip the Amigobot will all the 
necessary software and hardware needed to make autonomous 
trash collection a reality. Our small scaled trash collector 
behaves as if it were implemented in the real world. It stays 
between the lines of the road, it follows all traffic lights and 
signals, and it stops at any intersection. Once it detects a trash 
can, it stops to pick it up, and it deposits it in the onboard trash 
bed. 

 
All of this is possible thanks to the advances in Computer 

Vision. Previous work has presented different lane detection 
algorithms [1] and light filter algorithms. We based our work 
on these algorithms and wrote our own. The lane detection 
algorithm is used to detect the lines on the road in order to 
avoid drifting away and to detect the stopping horizontal line at 
the intersections. The light filter algorithm is used to detect the 

traffic light at the main cross-section making it possible for the 
robot to obey all transit laws. 
 

 
II. NEIGHBORHOOD MODEL 

 
A. Simulated Neighborhood 

Because of the Amgiobot’s size, implementing one-lane 
(one way) streets was considered in effort to keep the 
neighborhood model at a reasonable size. The Amigobot is 
approximately 11 inches wide, but will require a little extra 
room to adequately make turns and maneuver to pick up trash. 
If one-lane/one way roads were chosen, the trash collection 
neighborhood Sunset Place would have been modeled as 
shown in Fig. 1. 

 
Sunset Place has been modeled with two main roads that 

intersect orthogonally: Main Street and Jones Avenue (Fig. 2). 
Sunset Court is the outer loop that connects these two roads to 
the trash dumpster where the robots will deposit the collected 
trash at this local trash repository. The traffic signal is located 
at the intersection of Jones Avenue and Main Street, and the 
stop signs can be found at the remaining intersections. 

Figure 1.  Simulated one way neighborhood. 

 

Figure 2.  New Model of Sunset Place 



 
Figure 3.  Attempted neighborhood model using the tarp 

B. Actual Neighborhood 

Initially, Sunset Place was going to be modeled using a 
tarp as its foundation for easy and convenient setup, but the 
tarp was too loose for the robots to traverse throughout the 
neighborhood.  Instead, a more solid base will be needed for 
demonstrations, such as the floor of an empty room or 
multiple poster boards. The attempted neighborhood model 
using the tarp is shown in Fig. 3. 

 
Considering the few options, sidewalk and chalk was 

chosen as the best materials to build Sunset Place. Being that 
the sidewalk is everywhere, there were no limitations in 
regards to location. In addition, the sidewalk is a very solid 
foundation, which is ideal for the Amigobot to traverse 
throughout the neighborhood. Chalk deemed to be a very 
feasible solution to draw Sunset Place on the sidewalk. 
Initially the neighborhood was drawn to model a real 
neighborhood precisely. The lanes were drawn as white and 
yellow boundaries lines, as seen on a real road. Due to vision 
complications of the camera when the sun was out, these 
colors were not able to show enough contrast on the sidewalk 
and the Amigobot could not identify the lanes. Because of 
this, Sunset place was drawn with a variation of blue and red 
chalk. Fig. 4 shows the semi-final model of Sunset Place 
drawn in blue chalk. 

 
In efforts to beautify our neighborhood, houses were built 

and each house was required to have the same size and shape 
garbage bin. The traffic signal was placed at the 4-way 
intersection and stop signs were placed at each horizontal stop 
line. Due to lane detection complications, Sunset Place had to 
be scaled down to only one straight lane as shown in Fig. 5. 
The 90° angle turns were too much for the Amigobot to handle 
at this point in our research. 
 
 

III. COMPUTER VISION 
 

A. Graphical User Interface 

To analyze the visual data obtain from the Dynex 1.3MP 
webcam, we used the OpenCV2.0 C++ library. First the image 
is captured from the live video stream and stored as an  

 
Figure 4.  Sunset Place drawn with blue chalk 

 

 
Figure 5.  Scaled down Sunset Place with houses and garbage bins 

 
IplImage data type. Next the image is converted from the RGB 
(red, green, blue) color space to the HSV color space (hue, 
saturation, value). HSV is a cylindrical-coordinate 
representation of points in an RGB color model, which 
rearranges the geometry of RGB in an attempt to be more 
intuitive and perceptually relevant than the Cartesian (cube) 
representation (Fig. 6). 

 
Performing this conversion allows us to then perform an 

HSV range threshold. This threshold isolates every part of the 
HSV image that fits in the specified range and then outputs a 
binary image where the white spots are within the range and 
the black is outside of the thresholded range (Fig. 7). 
 

 
Figure 6.  RGB color space and HSV color space 



 

Figure 7.  HSV filter of the green traffic light 

 
 

 

 
Figure 8.  HSV filter GUI 

 
Optimizing the values was highly dependent on lighting of 

the surroundings and similar colors in the environment. These 
similar colors showed up in our filtered image as visual 
“noise,” which made a very narrow range over which we 
could filter. This was overcome by using weighted pixel areas 
via OpenCV structures called moments. As defined in the 
OpenCV library, “the function computes moments, up to the 
3rd order, of a vector shape or a rasterized shape”. Equation 
(1) presents how the spatial moments (mji) are computed in 
case of a raster image [2]. 

 
        𝑚𝑗𝑖 = �(𝑎𝑟𝑟𝑎𝑦(𝑥,𝑦) ∙ 𝑥𝑗 ∙ 𝑦𝑖)                       (1)

𝑥,𝑦

 

 
The central moments (muji) are defined by (2). 
 
𝑚𝑢𝑗𝑖 = �(𝑎𝑟𝑟𝑎𝑦(𝑥,𝑦) ∙

𝑥,𝑦

(𝑥 − �̅�)𝑗 ∙ (𝑦 − 𝑦�)𝑖)      (2) 

  
The mass center (𝑥,� 𝑦�) is defined as (3) 
 
                         �̅� = 𝑚10
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𝑚00
                          (3)  

 
After isolating our desired object using a color HSV 

threshold we first calculate the moments to estimate the 
position. Next we divide these calculated moments by the 
moment area and find the center coordinate of the detected 
pixels. Finally, a circle is drawn with the center at this point 
for debugging. At first, we tried to optimize this process by 
choosing different range values and recompiling after each 
small change. This proved extremely tedious and inefficient, 
fortunately OpenCV has a built in graphical user interface 
(GUI) library to cater to this exact situation. We were able to 
successfully create a GUI for optimizing these thresholds (Fig. 
8). 
 

The sliders in Fig. 3a enabled us to dynamically set the 
HSV low side of the threshold and the HSV high side. This 
GUI saved a tremendous amount of time and was also 
modified later and was used for brightness and contrast 
filtering as well as Hough transformations for line detection. 

 

B. Traffic Light Construction 

We were able to design a working traffic light. To do this, 
we utilized 3 clusters of 7 LEDs. Each LED is powered and 
controlled by a single I/O pin on an Atmel microcontroller 
with the Arduino boot loader. The code used for this is a 
simple infinite loop with a set delay between each light array. 
Using a single Atmel328 microcontroller we are able to 
control and power up to 4 traffic lights at once. However, due 
to the scale of this prototype, it was unnecessary to make more 
than one, although it would be a trivial matter to orchestrate a 
single intersection of 4 lights (Fig. 9). 



 

 
Figure 9.  Traffic light 

 

 
Figure 10.  Modified HSV GUI with cropped video feed 

 

C. Traffic Light and Stop Sign 

Our robot is designed to be able to detect the traffic light as 
well as various stop signs. Both of these tasks are achieved by 
having the robot filter the image for each specified color. If the 
robot detects red, as in the stop sign and the traffic light, then 
we know that we must stop. Our traffic signal subroutine is 
repeatedly called by the main robot instruction to determine 
whether or not a signal is present (the word “signal” is used 
broadly here to mean both light and sign). To eliminate false 
detections due to noise, we average 10 frames and if all 10 are 
consistently green or red then we send the appropriate 
command. Also, we should note that our camera has a frame 
rate of 25 frames per second so we could determine detection 

in less than half of a second which is appropriate for the speeds 
our robot travels. 

 

D. Point of Stop Line 

Sending a signal at the moment we detect a signal proves 
problematic because we do not know how far away the robot is 
from the stop signal. To make the solution more “in the box” 
and modular from the main program, we borrowed the 
algorithm used for lane detection. Basically this is a Canny 
edge detection followed by a Hough transformation to 
determine the presence and position of a line. This line is 
decomposed into points and a slope. We determine which line 
is the stop line by isolating only the lines detected in the image 
with a slope in a range of ± 0.025 (approximately a horizontal 
line). If the points of the edges of the line are close enough to 
the robot (essentially we are counting pixels out to the line 
from the robot), then we send the command back to the main 
program for the robot to halt. The number of pixels was 
optimized so that the robot will have enough space to stop 
without crossing over the line. For the green light, we continue 
as usual with no interruption to the main program flow. If there 
is a yellow light present, then we simply allow the robot to act 
as if the light is green. 

 

IV. LANE DETECTION ALGORITHM 

A. Graphical User Interface 

As mentioned in section A of Vision, the OpenCV library 
was used to perform vision processing for lane detection along 
with a modified version of the GUI mentioned there (Fig. 10). 
The GUI was implemented to determine the appropriate HSV 
thresholds necessary to filter the lanes in the image and rapidly 
determine the effects of changing thresholds for individual 
components of the algorithm, discussed in more detail later.  
The HSV color space was chosen because after weeks of 
tweaking a lane detection solution in the RGB color space it 
was discovered to be a less than optimal solution, maybe less 
than trivial, after failing to detect any lanes in the second 
image processed using it. 

 
 

 
 

Figure 11.  Original image, live video feed 



 

 
 

Figure 12.  HSV filtered image 

 
B. Implementation 

After several crash and burn attempts were made for lane 
detection, it became apparent that a little more thought would 
be required. The images recorded by the webcam 
demonstrated that it was difficult to place the camera on the 
Amigobot with identical poses between successive test runs.  
It became necessary to crop the image (Fig. 11) to remove as 
much external noise from the image as possible before 
processing.  External noise in the image refers to the noise that 
is present outside any region of interests in the image, i.e. the 
roadway.  

 
After removing the external noise the image show in Fig. 

10 was filtered in the HSV color space using the threshold 
obtained from the first six sliders of the GUI shown.  The 
resulting filtered image is in Fig. 12.  The left and right lanes 
are easy to detect using visual inspection. 

 
The HSV filtered image was then processed using a Canny 

edge detector.  The Canny edge detector uses three parameters 
to determine edges.  The first is an aperture size.  The aperture 
size is used by the Sobel operator in the underlying 
implementation of the edge detector. The Sobel operator 
essentially performs image smoothing therefore reducing 
noise.  An aperture size between 5 and 7 were determined to 
give the best results from the edge detector.  The edge detector 
uses hysteresis to find edge; therefore, it is necessary to 
specify two thresholds to determine edges. The larger 
threshold is used to determine the presence of “strong” edges 
in the image.  Then the lower threshold is applied using the 
information from the previous threshold to find smaller line 
segments. Using experimentation we were unable to determine 
optimal thresholds for the algorithm.  It was only possible to 
determine non-optimal thresholds. 

 
Fig. 13 was processed using a Hough Line transform to 

convert the edges shown in the image into lines in a 2D space.  
The Hough Transform chosen for this project was 
probabilistic.  To assist the algorithm in  

 

 
 

Figure 13.  Image after Canny edge detection 

classifying line appropriately for a target application, three key 
parameters must be modified.  One such parameter is the 
accumulator threshold.  Because the Hough transform uses a 
voting scheme, it is necessary to specify the number of votes 
needed to consider a point a part of a line.  The other two 
parameters are the minimum line length and maximum 
allowed gap. The minimum line length is used to filter out 
noise that appears as lines in the image.  The maximum 
allowed gap specifies how much space  can be between points 
that lie on the same line.  Although it detects lines in an image, 
the Hough transform provides no information to classify a line 
as part of an image. 

 
Classification of lines as a lane was done by setting a slope 

threshold for lines to be filtered into left and/or right lane.  The 
threshold for the left lane was 0.3 < slope < 0.6.  This 
threshold for the left lane was -0.3 < slope < -0.6.  The average 
slope of all lines for each lane was taken along with the 
maximum and minimum x/y value.  The left and right lanes 
were then connect at their endpoints to form a trapezoid.  This 
trapezoid was then overlaid on the cropped video feed.   
 
 

V. MECHANICS 
 

A. Mechanical Arm 

The mechanical arm used is made of five servomotors. 
However, we only used four of them given power limitations. 
Three of the motors were used to provide the arm with three 
degrees of freedom (DOF), while the other servomotor was 
used for the claw’s end-effector. 

 
The three DOF provided by the three servomotors allow 

the robotic arm to move in the plane perpendicular to the 
ground. We built the system in a way that both the trash bed 
and the potential trash can are located in the same plane as the 
mechanical arm at the time of picking up the trash can. This 
way, once the trash can is detected, the arm can move freely to 
pick it up, place it in the robot’s trash bed, and to return to the 
original position waiting for the next detection.  



 
 

Figure 14.  Connection between the mbed and the mechanical arm 

 
 

 
 

Figure 15.  Trash detection via sonar 

 

 
 

Figure 16.  Implementation of the trash collection 

 
 
B. Trash Detection Algorithm 

It was necessary for us to use the onboard sonar sensors 
(sensors numbers 4 and 5) on the Amigobot to detect the 
trashcan (Fig. 15). In our main program loop we continually 
poll the forward sonar (#4) until we detect an object at a range 
of less than 270 mm. At this point we step into a subroutine  
that sets the speed to about a fourth of the normal and wait for 
sonar 5 to detect a trash can at a range of less than 270 mm. 
Once this happens, we tell the robot to stop and send the  

 
 

 
 

Figure 17.  Mechanical arm angle references  

 
distance (Fig. 15) to our robotic arm subroutine. This 
subroutine formats the distance as individual bits for a serial 
data transfer to an ARM-based mbed MCU on the robotic arm. 
 

The coordinates are sent sonar sensor 5 as millimeters and 
are subsequently converted into angles for each of the 
threejoints of the mechanical arm. The conversion was 
achieved by programming the inverse kinematic equations 
using the arrangement in Fig. 17 [3]. These equations were 
implemented as a function call in the mbed’s main program. 
The angle of pickup was set to -90 degrees since it was 
determined this angle would result in an optimal grip. The 
resulting angles are then converted into a 1 to 2ms pulses 
within a 20ms frequency range. These pulses were generated 
from 4 of the mbed’s PWM outputs. 

 
Once the servomotors receive their respective pulses, they 

move to the indicated location and the arm’s claw is closed. 
With the object secured, the arm retrieves it and deposits it in a 
trash bin located behind it. The arm then resets to a standard 
position and waits for further commands. 

To increase the robustness of the trash picking function al 
trash objects were composed of paper cylinders with a height of 
15 cm.  

 

 
VI. METHODOLOGY 

 
All of the mentioned components then come together for a 

completely autonomous trash collection system. At all times 
the system is polling for three different inputs related to the 
three main algorithms: the lines of the road for verifying if the 
car is drifting away, the traffic lights, signals, and the stop line 
to obey transit laws, and the presence of a trash can in order to 
pick it up. These three algorithms can be represented by three 
separate Flowcharts (Fig. 18). 

 



 

 
 

(a) 
 
 
 
 

 
(b) 

 
 

 
 

(c) 
 

Figure 18.  (a) Flowchart to detect the lanes of the road and correct possible 
drifting, (b) Flowchart to detect the traffic light and act upon red or green 

light, (c) Flowchart to detect a potential trash can and pick it up if detected. 

 
 

At any point in time, the three algorithms are working at the 
same time. The process of one doesn’t interrupt the process of 
the other two. 
 
 

VII. CONCLUSION 
 

Even though we weren’t able to implement all the parts 
together due to time restriction, we were however able to have 
each individual part running. 

 
At the end, we were able to prove that developing an 

autonomous trash collection system is indeed efficient and 
viable. The fully implemented system using our computer 
vision algorithms will be able to autonomously picking up the 
trash of the houses on a given neighborhood. 
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