
Autonomous Trash Collection Robotic System
ECE 8843_Final Project Report

LaVonda Brown, Sergio García, Mason Nixon, Giancarlo Valentín, Ivan Walker
Department of Electrical and Computer Engineering

Georgia Institute of Technology

Abstract - Picking up the trash of people’s homes in a given
neighborhood is not the most appealing job. With the advances in
technology it is now a possibility to use autonomous mobile
robots to traverse a neighborhood with the main goal of
retrieving the trash from every house. To prove that this idea is
indeed possible and viable, we created a simple small scaled
neighborhood. We programmed the commercially available
ActivMedia’s Amigobot with a lane detection algorithm to stay
inside the road, computer vision algorithms to obey traffic
signals, and with an algorithm to detect simulated trash
containers in order for the robotic arm to pick it up. This paper
presents the individual components of the projects together with
the conclusions of our work.

Keywords: autonomous mobile robots, Amigobot, autonomous
trashcollection, lane detection algorithm

I. INTRODUCTION

Autonomous trash collection is indeed a viable alternative
for our society. The advances in technology allow us to have a
team of autonomous mobile robots collaborate with each other
with the main goal of following a predetermined path in a
given neighborhood and picking up the houses’ trash. Having
autonomous mobile robots perform these simple tasks is more
cost efficient rather than having to pay a human to do it. The
initial investment of a system like this may be expensive, but in
the long run it’s more expensive to pay a human’s salary and
health benefits.

It is the purpose of this paper to demonstrate the concept

behind autonomous trash collection. A simple small scaled
neighborhood was drawn with chalk and the commercially
available mobile robot Amigobot was used to traverse said
neighborhood. The idea is to equip the Amigobot will all the
necessary software and hardware needed to make autonomous
trash collection a reality. Our small scaled trash collector
behaves as if it were implemented in the real world. It stays
between the lines of the road, it follows all traffic lights and
signals, and it stops at any intersection. Once it detects a trash
can, it stops to pick it up, and it deposits it in the onboard trash
bed.

All of this is possible thanks to the advances in Computer

Vision. Previous work has presented different lane detection
algorithms [1] and light filter algorithms. We based our work
on these algorithms and wrote our own. The lane detection
algorithm is used to detect the lines on the road in order to
avoid drifting away and to detect the stopping horizontal line at
the intersections. The light filter algorithm is used to detect the

traffic light at the main cross-section making it possible for the
robot to obey all transit laws.

II. NEIGHBORHOOD MODEL

A. Simulated Neighborhood

Because of the Amgiobot’s size, implementing one-lane
(one way) streets was considered in effort to keep the
neighborhood model at a reasonable size. The Amigobot is
approximately 11 inches wide, but will require a little extra
room to adequately make turns and maneuver to pick up trash.
If one-lane/one way roads were chosen, the trash collection
neighborhood Sunset Place would have been modeled as
shown in Fig. 1.

Sunset Place has been modeled with two main roads that

intersect orthogonally: Main Street and Jones Avenue (Fig. 2).
Sunset Court is the outer loop that connects these two roads to
the trash dumpster where the robots will deposit the collected
trash at this local trash repository. The traffic signal is located
at the intersection of Jones Avenue and Main Street, and the
stop signs can be found at the remaining intersections.

Figure 1. Simulated one way neighborhood.

Figure 2. New Model of Sunset Place

Figure 3. Attempted neighborhood model using the tarp

B. Actual Neighborhood

Initially, Sunset Place was going to be modeled using a
tarp as its foundation for easy and convenient setup, but the
tarp was too loose for the robots to traverse throughout the
neighborhood. Instead, a more solid base will be needed for
demonstrations, such as the floor of an empty room or
multiple poster boards. The attempted neighborhood model
using the tarp is shown in Fig. 3.

Considering the few options, sidewalk and chalk was

chosen as the best materials to build Sunset Place. Being that
the sidewalk is everywhere, there were no limitations in
regards to location. In addition, the sidewalk is a very solid
foundation, which is ideal for the Amigobot to traverse
throughout the neighborhood. Chalk deemed to be a very
feasible solution to draw Sunset Place on the sidewalk.
Initially the neighborhood was drawn to model a real
neighborhood precisely. The lanes were drawn as white and
yellow boundaries lines, as seen on a real road. Due to vision
complications of the camera when the sun was out, these
colors were not able to show enough contrast on the sidewalk
and the Amigobot could not identify the lanes. Because of
this, Sunset place was drawn with a variation of blue and red
chalk. Fig. 4 shows the semi-final model of Sunset Place
drawn in blue chalk.

In efforts to beautify our neighborhood, houses were built

and each house was required to have the same size and shape
garbage bin. The traffic signal was placed at the 4-way
intersection and stop signs were placed at each horizontal stop
line. Due to lane detection complications, Sunset Place had to
be scaled down to only one straight lane as shown in Fig. 5.
The 90° angle turns were too much for the Amigobot to handle
at this point in our research.

III. COMPUTER VISION

A. Graphical User Interface

To analyze the visual data obtain from the Dynex 1.3MP
webcam, we used the OpenCV2.0 C++ library. First the image
is captured from the live video stream and stored as an

Figure 4. Sunset Place drawn with blue chalk

Figure 5. Scaled down Sunset Place with houses and garbage bins

IplImage data type. Next the image is converted from the RGB
(red, green, blue) color space to the HSV color space (hue,
saturation, value). HSV is a cylindrical-coordinate
representation of points in an RGB color model, which
rearranges the geometry of RGB in an attempt to be more
intuitive and perceptually relevant than the Cartesian (cube)
representation (Fig. 6).

Performing this conversion allows us to then perform an

HSV range threshold. This threshold isolates every part of the
HSV image that fits in the specified range and then outputs a
binary image where the white spots are within the range and
the black is outside of the thresholded range (Fig. 7).

Figure 6. RGB color space and HSV color space

Figure 7. HSV filter of the green traffic light

Figure 8. HSV filter GUI

Optimizing the values was highly dependent on lighting of

the surroundings and similar colors in the environment. These
similar colors showed up in our filtered image as visual
“noise,” which made a very narrow range over which we
could filter. This was overcome by using weighted pixel areas
via OpenCV structures called moments. As defined in the
OpenCV library, “the function computes moments, up to the
3rd order, of a vector shape or a rasterized shape”. Equation
(1) presents how the spatial moments (mji) are computed in
case of a raster image [2].

 𝑚𝑗𝑖 = �(𝑎𝑟𝑟𝑎𝑦(𝑥,𝑦) ∙ 𝑥𝑗 ∙ 𝑦𝑖) (1)

𝑥,𝑦

The central moments (muji) are defined by (2).

𝑚𝑢𝑗𝑖 = �(𝑎𝑟𝑟𝑎𝑦(𝑥,𝑦) ∙

𝑥,𝑦

(𝑥 − �̅�)𝑗 ∙ (𝑦 − 𝑦�)𝑖) (2)

The mass center (𝑥,� 𝑦�) is defined as (3)

 �̅� = 𝑚10

𝑚00
, 𝑦� = 𝑚01

𝑚00
 (3)

After isolating our desired object using a color HSV

threshold we first calculate the moments to estimate the
position. Next we divide these calculated moments by the
moment area and find the center coordinate of the detected
pixels. Finally, a circle is drawn with the center at this point
for debugging. At first, we tried to optimize this process by
choosing different range values and recompiling after each
small change. This proved extremely tedious and inefficient,
fortunately OpenCV has a built in graphical user interface
(GUI) library to cater to this exact situation. We were able to
successfully create a GUI for optimizing these thresholds (Fig.
8).

The sliders in Fig. 3a enabled us to dynamically set the
HSV low side of the threshold and the HSV high side. This
GUI saved a tremendous amount of time and was also
modified later and was used for brightness and contrast
filtering as well as Hough transformations for line detection.

B. Traffic Light Construction

We were able to design a working traffic light. To do this,
we utilized 3 clusters of 7 LEDs. Each LED is powered and
controlled by a single I/O pin on an Atmel microcontroller
with the Arduino boot loader. The code used for this is a
simple infinite loop with a set delay between each light array.
Using a single Atmel328 microcontroller we are able to
control and power up to 4 traffic lights at once. However, due
to the scale of this prototype, it was unnecessary to make more
than one, although it would be a trivial matter to orchestrate a
single intersection of 4 lights (Fig. 9).

Figure 9. Traffic light

Figure 10. Modified HSV GUI with cropped video feed

C. Traffic Light and Stop Sign

Our robot is designed to be able to detect the traffic light as
well as various stop signs. Both of these tasks are achieved by
having the robot filter the image for each specified color. If the
robot detects red, as in the stop sign and the traffic light, then
we know that we must stop. Our traffic signal subroutine is
repeatedly called by the main robot instruction to determine
whether or not a signal is present (the word “signal” is used
broadly here to mean both light and sign). To eliminate false
detections due to noise, we average 10 frames and if all 10 are
consistently green or red then we send the appropriate
command. Also, we should note that our camera has a frame
rate of 25 frames per second so we could determine detection

in less than half of a second which is appropriate for the speeds
our robot travels.

D. Point of Stop Line

Sending a signal at the moment we detect a signal proves
problematic because we do not know how far away the robot is
from the stop signal. To make the solution more “in the box”
and modular from the main program, we borrowed the
algorithm used for lane detection. Basically this is a Canny
edge detection followed by a Hough transformation to
determine the presence and position of a line. This line is
decomposed into points and a slope. We determine which line
is the stop line by isolating only the lines detected in the image
with a slope in a range of ± 0.025 (approximately a horizontal
line). If the points of the edges of the line are close enough to
the robot (essentially we are counting pixels out to the line
from the robot), then we send the command back to the main
program for the robot to halt. The number of pixels was
optimized so that the robot will have enough space to stop
without crossing over the line. For the green light, we continue
as usual with no interruption to the main program flow. If there
is a yellow light present, then we simply allow the robot to act
as if the light is green.

IV. LANE DETECTION ALGORITHM

A. Graphical User Interface

As mentioned in section A of Vision, the OpenCV library
was used to perform vision processing for lane detection along
with a modified version of the GUI mentioned there (Fig. 10).
The GUI was implemented to determine the appropriate HSV
thresholds necessary to filter the lanes in the image and rapidly
determine the effects of changing thresholds for individual
components of the algorithm, discussed in more detail later.
The HSV color space was chosen because after weeks of
tweaking a lane detection solution in the RGB color space it
was discovered to be a less than optimal solution, maybe less
than trivial, after failing to detect any lanes in the second
image processed using it.

Figure 11. Original image, live video feed

Figure 12. HSV filtered image

B. Implementation

After several crash and burn attempts were made for lane
detection, it became apparent that a little more thought would
be required. The images recorded by the webcam
demonstrated that it was difficult to place the camera on the
Amigobot with identical poses between successive test runs.
It became necessary to crop the image (Fig. 11) to remove as
much external noise from the image as possible before
processing. External noise in the image refers to the noise that
is present outside any region of interests in the image, i.e. the
roadway.

After removing the external noise the image show in Fig.

10 was filtered in the HSV color space using the threshold
obtained from the first six sliders of the GUI shown. The
resulting filtered image is in Fig. 12. The left and right lanes
are easy to detect using visual inspection.

The HSV filtered image was then processed using a Canny

edge detector. The Canny edge detector uses three parameters
to determine edges. The first is an aperture size. The aperture
size is used by the Sobel operator in the underlying
implementation of the edge detector. The Sobel operator
essentially performs image smoothing therefore reducing
noise. An aperture size between 5 and 7 were determined to
give the best results from the edge detector. The edge detector
uses hysteresis to find edge; therefore, it is necessary to
specify two thresholds to determine edges. The larger
threshold is used to determine the presence of “strong” edges
in the image. Then the lower threshold is applied using the
information from the previous threshold to find smaller line
segments. Using experimentation we were unable to determine
optimal thresholds for the algorithm. It was only possible to
determine non-optimal thresholds.

Fig. 13 was processed using a Hough Line transform to

convert the edges shown in the image into lines in a 2D space.
The Hough Transform chosen for this project was
probabilistic. To assist the algorithm in

Figure 13. Image after Canny edge detection

classifying line appropriately for a target application, three key
parameters must be modified. One such parameter is the
accumulator threshold. Because the Hough transform uses a
voting scheme, it is necessary to specify the number of votes
needed to consider a point a part of a line. The other two
parameters are the minimum line length and maximum
allowed gap. The minimum line length is used to filter out
noise that appears as lines in the image. The maximum
allowed gap specifies how much space can be between points
that lie on the same line. Although it detects lines in an image,
the Hough transform provides no information to classify a line
as part of an image.

Classification of lines as a lane was done by setting a slope

threshold for lines to be filtered into left and/or right lane. The
threshold for the left lane was 0.3 < slope < 0.6. This
threshold for the left lane was -0.3 < slope < -0.6. The average
slope of all lines for each lane was taken along with the
maximum and minimum x/y value. The left and right lanes
were then connect at their endpoints to form a trapezoid. This
trapezoid was then overlaid on the cropped video feed.

V. MECHANICS

A. Mechanical Arm

The mechanical arm used is made of five servomotors.
However, we only used four of them given power limitations.
Three of the motors were used to provide the arm with three
degrees of freedom (DOF), while the other servomotor was
used for the claw’s end-effector.

The three DOF provided by the three servomotors allow

the robotic arm to move in the plane perpendicular to the
ground. We built the system in a way that both the trash bed
and the potential trash can are located in the same plane as the
mechanical arm at the time of picking up the trash can. This
way, once the trash can is detected, the arm can move freely to
pick it up, place it in the robot’s trash bed, and to return to the
original position waiting for the next detection.

Figure 14. Connection between the mbed and the mechanical arm

Figure 15. Trash detection via sonar

Figure 16. Implementation of the trash collection

B. Trash Detection Algorithm

It was necessary for us to use the onboard sonar sensors
(sensors numbers 4 and 5) on the Amigobot to detect the
trashcan (Fig. 15). In our main program loop we continually
poll the forward sonar (#4) until we detect an object at a range
of less than 270 mm. At this point we step into a subroutine
that sets the speed to about a fourth of the normal and wait for
sonar 5 to detect a trash can at a range of less than 270 mm.
Once this happens, we tell the robot to stop and send the

Figure 17. Mechanical arm angle references

distance (Fig. 15) to our robotic arm subroutine. This
subroutine formats the distance as individual bits for a serial
data transfer to an ARM-based mbed MCU on the robotic arm.

The coordinates are sent sonar sensor 5 as millimeters and
are subsequently converted into angles for each of the
threejoints of the mechanical arm. The conversion was
achieved by programming the inverse kinematic equations
using the arrangement in Fig. 17 [3]. These equations were
implemented as a function call in the mbed’s main program.
The angle of pickup was set to -90 degrees since it was
determined this angle would result in an optimal grip. The
resulting angles are then converted into a 1 to 2ms pulses
within a 20ms frequency range. These pulses were generated
from 4 of the mbed’s PWM outputs.

Once the servomotors receive their respective pulses, they

move to the indicated location and the arm’s claw is closed.
With the object secured, the arm retrieves it and deposits it in a
trash bin located behind it. The arm then resets to a standard
position and waits for further commands.

To increase the robustness of the trash picking function al
trash objects were composed of paper cylinders with a height of
15 cm.

VI. METHODOLOGY

All of the mentioned components then come together for a

completely autonomous trash collection system. At all times
the system is polling for three different inputs related to the
three main algorithms: the lines of the road for verifying if the
car is drifting away, the traffic lights, signals, and the stop line
to obey transit laws, and the presence of a trash can in order to
pick it up. These three algorithms can be represented by three
separate Flowcharts (Fig. 18).

(a)

(b)

(c)

Figure 18. (a) Flowchart to detect the lanes of the road and correct possible
drifting, (b) Flowchart to detect the traffic light and act upon red or green

light, (c) Flowchart to detect a potential trash can and pick it up if detected.

At any point in time, the three algorithms are working at the
same time. The process of one doesn’t interrupt the process of
the other two.

VII. CONCLUSION

Even though we weren’t able to implement all the parts
together due to time restriction, we were however able to have
each individual part running.

At the end, we were able to prove that developing an

autonomous trash collection system is indeed efficient and
viable. The fully implemented system using our computer
vision algorithms will be able to autonomously picking up the
trash of the houses on a given neighborhood.

REFERENCES

[1] A. S. Huang, S. Teller (2011). “Probabilistic Lane Estimation for
Autonomous Driving using Basis Curves”. Autonomous Robots, vol 31,
no. 2-3, 269-283.

[2] Open CV Webpage (2010) “Structural Analysis and Shape Descriptors”,
http://opencv.willowgarage.com/documentation/cpp/structural_analysis_
and_shape_descriptors.html

[3] Lipkin, Harvey. “Displacement Analysis Serial Robot slides”. Slides
obtained from the Introduction to Robotics course (Fall 2011) at Georgia
Institute of Technology.

http://opencv.willowgarage.com/documentation/cpp/structural_analysis_and_shape_descriptors.html�
http://opencv.willowgarage.com/documentation/cpp/structural_analysis_and_shape_descriptors.html�

	I. Introduction
	II. Neighborhood Model
	A. Simulated Neighborhood
	B. Actual Neighborhood

	III. Computer Vision
	A. Graphical User Interface
	B. Traffic Light Construction
	C. Traffic Light and Stop Sign
	D. Point of Stop Line

	IV. Lane Detection Algorithm
	A. Graphical User Interface
	B. Implementation

	V. Mechanics
	A. Mechanical Arm
	B. Trash Detection Algorithm

	VI. Methodology
	VII. Conclusion
	References

