

DC Motor Speed Controller
Final Written Report

Mason Nixon & Jake Bosarge

 Page 2/12

TO: Christopher Wilson

FROM: Mason Nixon & Jake Bosarge (THUR 3:30-5:20 p.m.)

DATE: 05/03/2010

SUBJECT: Final Written Report

Design Decisions
 When designing our motor controller system, it was necessary to make several design
decisions about primary systems of the motor controller. One such system is the input from the
motor for determining speed of which we could choose between Analog-to-Digital conversion
(ADC) or Input Capture. Aside from just being simpler, we determined that the best method would
be the ADC method. If we were to employ the input capture method it would take much more code
than with the ADC. Also, the ADC system on the HCS12 is built for this exact purpose: to take an
analog input and convert it to a usable form for our coding. One major limitation however is that the
ADC input can only capture with up to 10-bit resolution.
 Another decision we had to make was how to determine the rpm speed: either the
comparator or use a conversion factor from measured frequencies. One major difference is cost. By
not using the comparator we eliminated the additional cost of a comparator and all of the hardware
additions it would require. This, however, was at the expense of accuracy. By not knowing the exact
frequency in our calculations, we introduced some error. We believed that this was justified since
our speed display only showed the first two digits, and since our method could presumably only be
flawed by the resolution of the ADC, we determined that we could have a minimum error of around
18 rpm since every ADC value could change the rpm speed in increments of 18 (See the Software
Design section below for more details).

Hardware Design

For the motor control hardware design (See the attached figure) we were able to make a
compact design for the two main systems: the speed display and the motor drive system. To power
the motor, the 2N2222 NPN BJT was employed as a switch. We used the fact that the speed of a
DC motor is directly proportional to the voltage applied across its windings. We send in a pulse
width modulated signal from Port T3 which will drive the motor. By varying the pulse width duty
cycle, we are able to create variable speed motor. Unfortunately, the motor requires 12VDC to be
driven and the microcontroller can only output a maximum of 5VDC. By tying the emitter to
ground and the collector to the negative terminal of the motor, then by tying the positive terminal to
the 12V source, we were able to implement this variable speed control. Because of the switching
mechanism of the transistor, it was also necessary to protect it against the transients during the
“turn-off” mode. To do this, we employed an anti-parallel or “freewheeling” diode, the 1N4001,
wired in parallel with the motor.

For the feedback loop of our control system, we needed some way to measure the motor
speed. Since the Buehler motor came equipped with a built-in tachometer, we were able to use its
output to measure the motor speed. The tachometer would produce an approximately 30V sine wave
whose frequency (and voltage amplitude) is proportional to the speed of the motor. Since the
HCS12 could only handle inputs no higher than about 4V, we needed to step this voltage down.
Also, we determined that it would be most practical to use the voltage amplitude instead of the

 Page 3/12

frequency, so we employed a full-wave rectifier to convert the periodic signal to a constant dc
signal. This signal was then the input into the Analog-to-Digital Port AD1 and the amplitude was
then used to determine the motor speed (which is described in more detail in the Software Design
section.

Software Design
 The software code was uploaded to the HCS12 by using the Freescale CodeWarrior IDE.
The code was written in the C programming language and a flow chart and the final code itself can
be found as an attachment to this report. The code can be broken down into four I/O systems: the
output PWM motor driver, the display output, the motor speed input, and the compensator. The
PWM, whose function was described in the Hardware Design section, was set up with a period set
to 150 with a prescale of 2. We used clock A and a begin high polarity on timer channel 0. Our
MODRR bit 0x08 (bit 3) was set high to correspond to Port T3 as the PWM output. For controlling
the speed, as mentioned, we would adjust the duty cycle: a lower duty cycle corresponding to a
lower speed and a higher duty cycle for a higher speed. We could write in values up to 150 (the total
period of the PWM), where at 150 we would be driving the motor at maximum speed (About
5000rpm). Since we only needed 3 different speeds (High, medium, and low), we stored 3 values
for 75, 62.5 and 50% in an array called refvalues[], indicating that these were the values of
reference we were using. By using the 2 switches as a two-bit binary number, we made the switch
settings (called swstate in the program—see the attached source code) the index of the refvalues
array.

The motor speed input

 The speed display output was created using 11 different output pins: PT0-PT2, PT5-PT7,
and PTAD3-PTAD7. The display consists of 3 elements: two hex-to-decimal 7-segement displays
for the first two digits of the rpm speed, and an 3 digit array of leds. We first needed to derive a
method of determining the rpm speed. We decided to use our ADC value (obtained from the motor
speed input as described in the previous paragraph) to derive the rpm speed with the following
equations:

By dividing the rpm speed by our ADC value for each switch setting and then taking an average of
these slopes, we calculate about 2.41. Then we are able to get a constant scalar of the ADC value of
2.41*7.5=18.1.

Although this method is said to be a little less accurate than say for instance a comparator circuit,
we found it to be very accurate when testing the motor frequency and calculating the speed directly.
The only variation seemed to be since every ADC value would cause an rpm speed jump of 18 rpm,
which was still fine since we only needed to display the first two digits of the speed.
 After calculating the speed it was necessary to convert these values into displayable forms.
For the first two digits we were able to divide the rpm speed by ten until we had a number less than
10; this was the first digit. By taking the number of times we divided by ten to get the first digit and

 Page 4/12

subtracting one iteration, we then had the first two digits—from these two digits, we subtracted 10
times the first digit and were able to have just the second digit by itself. The number of times we
divided by ten the first time was the power of ten needed for the scientific notation. These values
were then easily sent to our display using bit-shifting. It is also worth mentioning that we utilized a
timer overflow interrupt that would occur every 1ms to allow our display to update every 250ms by
using a decremented counter of 250 (aptly dubbed counter).
 The final module of our program was the compensator. By taking samples of our open-loop
response, we were able to construct a transfer function of our plant using MATLAB. We
determined by simulation is MATLAB that an improved steady-state response, a faster rise time,
and an overall more stable system could be created using a PID compensator. To compensate, it is
necessary to calculate an error from the feedback loop. We took our reference value and subtracted
to obtained sample from the ATD input from the motor tachometer. The P (or Proportional)
compensator is simply the product of a scalar gain quantity and the error term. The I (or Integrator)
compensator is a summation of the error over all time of the motor operation multiplied by the
sample time and then scaled by another gain factor. The D (or Differentiator) compensator is the
average of the current error and the previous error multiplied by the sample time and then
multiplied by yet another gain factor.
 The sample time was a little more difficult to calculate, so we decided that a more accurate
measure could be employed by utilizing our 1ms timer interrupt. We used the onboard ATD system
to average 8 samples every time the 1ms interrupt occurred, which effectively forces our sample
time to be approximately 1ms (As accurate as the interrupt time is to 1ms). The gain factors for the
P-I-D compensators were determined mostly by trial and error to see what combination would get
the best performance.

Problems

Many problems were encountered while creating our project, and in several instances, their
solutions eluded us for quite a while. To start out with, we found that if we increased our Kp, Ki,
and Kd values enough to achieve good performance, our program would malfunction when
switching from high to low speeds. Under these circumstances, the motor would increase to full
speed (100% duty cycle), and it would not return to any other speed setting without turning it off
and re-initializing our code. This problem baffled us for a long time because its cause was not easy
to identify. After extensively tweaking and testing portions of our code, we discovered that under
certain circumstances, certain variables such as Gc and Ierror (see attached code at the end of this
report) would increase rapidly to some huge value, and not come down. This is why re-initializing
our code was necessary to correct this problem, since in doing so all variables were reset. It turns
out that having a large Kp or Ki value coupled with a large error value would result in an overflow.
This was corrected by instituting a saturation block. In doing so, not only could we switch speeds
without problem, our results were considerably improved. For example, overshoot was reduced and
our closed loop design was noticeably faster than open loop.

Another problem we faced was that starting from rest, our motor occasionally experienced a
slight delay in reaching its set speed. After running through our program step-by-step, we found
that our Ierror variable, which acted as running tally of recent errors, had to deplete itself before it
was able to increase. As it goes, we had written our program so that by turning the switches off, the
program would automatically set the motor speed to 0 instead of calculating that it should be 0.
This meant that the next time the motor speed was increased, our program had to deplete the

 Page 5/12

previous values before it could likewise increase. We removed this pre-set value and from then on
out, our program never delayed between any switch settings.

There were many minor problems encountered that we corrected along the way as well.
These included using an interrupt and timer to regulate our compensator instead of a counter,
changing our compensator code to correctly implement derivative control by taking into account the
present error in relation to the previous one, and repeatedly altering our Kp, Ki, and Kd values
(Kp=1, Ki=1 and Kd=5 performed best).

Conclusions

In completing our project, we look back at the work we have done and appreciate all of the
things we have learned along the way. Not only have we learned more about the hardware and
software used, but many tools as well, such as Excel, MATLAB, and the oscilloscope. More
importantly, we learned many practical things about problem solving and engineering in general.
This includes avoiding assumptions and checking all parts of a design to ensure it is working as
expected. For example, we assumed our controller worked correctly since the math worked out on
paper, but in actuality the computer calculated things differently than we did. So, by going through
our program line-by-line, we were able to determine the disparities and correct them. All of this
will serve us well down the road since in the real world, we will be designing, building, testing, and
debugging things just like we did during our project. Furthermore, these kinds of problem solving
skills are useful in all spheres of life. Finally, by working together we learned how to better
collaborate and developed a greater appreciation of the importance of teamwork. With regards to
our project, while there are several applications for it, such as cruise control, there are even more
with respect to the controller itself, such as mine detecting robots and magnetic signature
management on “stealth” ships.

 Page 6/12

The following is our final code:

// EE Lab IV – Final Project Code
#include <hidef.h> // common defines and macros
#include <MC9S12C32.h> // derivative information
#pragma LINK_INFO DERIVATIVE "MC9S12C32"
#define TOTALATD
(ATDDR0L+ATDDR1L+ATDDR2L+ATDDR3L+ATDDR4L+ATDDR5L+ATDDR6L+ATDDR7L)
#define DS_1 150
#define DS_2 1000 //Number of clocks for 1ms at 1MHz

char bit0, bit1, bit2, swstate, Kp, Ki, Kd, flag;
unsigned char sample, a;
int error, preverror, refvalues[4], i, rpmspeed, Gp, Gd, Gi, Gc, sec, counter;
signed long Ierror, Derror, temp;

void interrupt timer_ISR(void){ //Vector 8
//Update the display at 250ms intervals
 unsigned int f, rpmtemp, tenpower, g, msb1, msb2;
 f=0; rpmtemp=0; tenpower=0; g=0; msb1=0; msb2=0;

 if(counter==0){ //Update display after 250 ms
 sec++;
 counter=250;
 rpmtemp=rpmspeed; //current value
 if(rpmtemp>500){
 for(f=0;rpmtemp>1;f++){
 rpmtemp=rpmtemp/10; //shift decimal to the left
 }
 tenpower=f-1; //number of leds lit
 g=tenpower;
 rpmtemp=rpmspeed;
 for(g;g>0;g--){
 rpmtemp=rpmtemp/10;
 }
 msb1=rpmtemp;
 g=tenpower-1;
 rpmtemp=rpmspeed;
 for(g;g>0;g--){
 rpmtemp=rpmtemp/10;
 }
 msb2=rpmtemp-(10*msb1);

 //Output to Ports
 //3 digit binary
 if(tenpower==0){
 PTT_PTT0=0;
 PTT_PTT1=0;
 PTT_PTT2=0;
 }
 else if(tenpower==1){
 PTT_PTT0=1;
 PTT_PTT1=0;
 PTT_PTT2=0;
 }

 Page 7/12

 else if(tenpower==2){
 PTT_PTT0=1;
 PTT_PTT1=1;
 PTT_PTT2=0;
 }
 else if(tenpower==3){
 PTT_PTT0=1;
 PTT_PTT1=1;
 PTT_PTT2=1;
 }

 //First digit of HEX display
 PTT_PTT5=(msb1 & 0x08)>>3;
 PTT_PTT6=(msb1 & 0x04)>>2;
 PTT_PTT7=(msb1 & 0x02)>>1;
 PTAD_PTAD3=msb1 & 0x01;

 //Second digit of HEX display
 PTAD_PTAD4=(msb2 & 0x08)>>3;
 PTAD_PTAD5=(msb2 & 0x04)>>2;
 PTAD_PTAD6=(msb2 & 0x02)>>1;
 PTAD_PTAD7=msb2 & 0x01;
 //update_display(rpmspeed);
 }
 else{ //For the 0 rpm case

 PTT_PTT0=0;
PTT_PTT1=0;

 PTT_PTT2=0;
 PTT_PTT5=0;

PTT_PTT6=0;
PTT_PTT7=0;
PTAD_PTAD3=0;
PTAD_PTAD4=0;
PTAD_PTAD5=0;
PTAD_PTAD6=0;
PTAD_PTAD7=0;

 }
 }
 else{
 --counter;
 /* Initiates conversion of pin AN1 and return converted data */
 ATDCTL5 = 0x81; // write to ATDCTL5 starts conversion
 while (ATDSTAT0_SCF == 0); // wait for conversion sequence complete
 sample=(TOTALATD/8); // return average value from ATDDR's
 }

 TC0+=DS_2; //Set-up TC0
 TFLG1_C0F=1;//Latch needs 1 to reset
 TIE_C0I=0; //Disable the interrupt
 flag=1;
}

void init_ATD() {
char i;
/* Power up the ATD module */
ATDCTL2_ADPU = 1; //Activate power up

 Page 8/12

ATDCTL2_AFFC = 0; //Normal flag clear (default)
ATDCTL2_AWAI = 0; //Run in WAIT mode (default)
ATDCTL2_ETRIGE = 0; //No external trigger (default)
ATDCTL2_ASCIE = 0; //No interrupts (default)
/* Short delay (> 20us) for power up */
for (i = 0; i < 20; i++);
/* Set up ATDCTL3 for conversion sequence */
ATDCTL3_S8C = 0; //one conversion per sequence
ATDCTL3_S4C = 0;
ATDCTL3_S2C = 0;
ATDCTL3_S1C = 0;
ATDCTL3_FIFO = 0; //result in consecutive registers (default)
ATDCTL3_FRZ = 0; //continue in freeze mode (default)
/* Set up ATDCTL4 for conversion timing */
ATDCTL4_SRES8 = 1; //8-bit resolution (0 = 10-bit)
ATDCTL4_SMP = 3; //16-clock (max) sample time for accuracy
ATDCTL4_PRS = 1; //prescale fbus(4MHz) by 4 for range [2MHZ..500KHz]
}

void main(void){
PTT=0; DDRT=0xE7; DDRAD=0xF8; bit0=0; bit1=0; bit2=0; swstate=0; i=0;
Gp=0; Gi=0; Gc=0; Gd=0; Kp=1; Ki=1; Kd=5; Derror=0; Ierror=0; error=0; temp=0; sec=0;
refvalues[0]=0;
refvalues[1]=128;//75;//128; //50%
refvalues[3]=159;//94;//159; //62.5%
refvalues[2]=191;//113;//191; //75%

 //*****Timer Setup
TIOS_IOS0=1; //Enable Output compare channel 1
TFLG1_C0F=0; //Clear C0F flag
TSCR2_TOI=1; //enable timer overflow interrupt
counter=250;
TC0=TCNT; //Set-up TC0 - Now have 8ms to set up system without an interrupt
TIE_C0I=1; //Enable the interrupt

 //*****PWM Setup
 PWMPRCLK=0x20; //Prescale of 16 [first 3 LSB 000 to 111 is 0,2,4,8,16,32,64,128]
 PWMSCLA = 0x04;//don't care, since using A and not SA
 PWMPOL = 0x08; //Polarity - Begin high
 PWMPER3=DS_1;
 PWMDTY3=25*swstate;
 PWME_PWME3=1; //PWM enable for channel 0
 MODRR=0x08; //MODRR bit k controls bit k of Port T
 init_ATD(); // set up the ATD module
 TSCR2 = 2; //SET BUS Clock prescaler to 4 /4= (1MHz)
 TSCR1_TEN = 1 ; // ENABLE the timer
 EnableInterrupts ; // ENABLE global interrupts

 while(1){ // infinite loop for the led counter
 bit0=PORTA & 0x01; //SW1=PA0
 bit1=(PORTB & 0x10)>>3; //SW2=PB4
 swstate = bit1 | bit0;
 error=refvalues[swstate]-sample;
 Gp=Kp*error;
 if(swstate==0 && Ierror<0){
 Ierror=0;

 Page 9/12

 }
 else{
 Ierror+=error;
 }
 temp=Ki*Ierror;
 Gi=temp/1000;
 Derror=(preverror-error)/2;
 temp=Kd*Derror;
 Gd=temp/1000;
 Gc=Gp+Gi+Gd;
 preverror=error;
 temp=0;
 if(Gc>150){
 Gc=150;
 }
 else if(Gc<0){
 Gc=0;
 }
 //PWMDTY3=Gc;

 //Open loop case
 PWMDTY3=refvalues[swstate];

 rpmspeed=(sample*18)+(sample/10);
 if(flag==1){
 TFLG1_C0F=0; //Clear C0F flag
 TIE_C0I=1; //Enable the interrupt
 flag=0;
 }
 }
} //End main

 Page 10/12

Figure 1: Circuit Schematic

Figure 2: Software Flow Chart

 Page 11/12

Figure 3: Hardware Cost

Hardware Description Quantity Unit Cost

Dragonfly Microcontroller Development Board 1 $18

Breadboard Jameco BreadBoard 1 $5.37

Potentiometer 100KOhm, 1/2W 1 $0.83

Diode 1N4001, 50V, 1A 5 $0.10

Capacitor 10microF, 50V 1 $0.21

Resistor 220Ohm, 5%, 1/4W 1 $0.05

Transistor 2N2222A NPN BJT 1 $0.41

Total Cost $25.37

Note: All prices obtained from the AU Chemical Supply Store, except the Dragonfly, which can be
found here: http://www.evbplus.com/c32_modules/DIP40.html

Figure 4: Oscilloscope Output of Low, Medium, and High Speeds

Figure 5: Overshoot as calculated by the oscilloscope

Speed Overshoot

Low 0.2941 %

Medium 0.2703 %

High 1.8595 %

 Page 12/12

Figure 6: Oscilloscope output of closed loop vs. open loop for low speed (closed loop in light blue)
Time in seconds vs. Voltage amplitude

Figure 7: Oscilloscope output of closed loop vs. open loop for medium speed (closed loop in blue)

Time in seconds vs. Voltage amplitude

Figure 8: Oscilloscope output of closed vs. open loop for high speed (closed loop in red)

Time in seconds vs. Voltage amplitude

