
Mason Nixon

ELEC 5410 Page 1

Dr. Stanley Reeves

October 8, 2010

Project #4: The DFT and FFT

1. Write a MATLAB function that implements a DFT using the DFT summation formula. Include a listing

of your function.

function X = DFT(sequence)
N = length(sequence);
Xi = 0; X = 0;
for k = 1:N;
 for n = 1:N;
 Xi(n) = sequence(n)*exp(-j*2*pi*(n-1)*(k-1)/N);
 end
X(k) = sum(Xi);
End

2. The overhead associated with the loops and the calculation of the multipliers in a DFT is

considerable in MATLAB. To eliminate this from the process, create a matrix F that can be used to

multiply a column vector to perform a DFT:

F = dftmtx(2^11);

Create a random sequence N = 2
11

 points long. Perform a DFT by multiplying the sequence (as a

column vector) by the DFT matrix. Report the time required for the DFT matrix multiply. Do not

include the time required to create the DFT matrix. Use tic and toc or cputime to time this

operation. (To get accurate timing, before you begin, create the output variable by doing something

like:

Xf = zeros(2^11,1);

Compare to the time required for calculating the DFT of the same sequence using the function you

wrote.

The time required to perform the DFT using my summation implementation was 2.0592 seconds,

whereas the time taken to DFT using matrix multiplication was approximately 0.0156 seconds according

to the cputime and tic and toc functions in MATLAB. This is most likely because MATLAB is an

interpreted language and it must interpret every line in a for loop each time it goes through the loop.

Since the second method uses matrix multiplication (and since MATLAB is designed for vector

operations), the DFT is calculated 42.3 times faster.

Mason Nixon

ELEC 5410 Page 2

Dr. Stanley Reeves

October 8, 2010

3. Use fft to compute the DFT of the same sequence and report the time. (Do the FFT in a loop

10,000 times and average the resulting time.)

The fft function calculates the DFT in 39 microseconds after averaging 10,000 iterations.

4. Determine the time required to compute an FFT in MATLAB of a sequence with length

2
11

 - 9. Explain why this takes longer than a length-2
11

 FFT.

The fft function calculates the DFT in 371.28 microseconds after averaging 10,000 iterations. According

to Mathworks, “If n is a power of 2, a one-dimensional FFT of length n requires less than 3n log2 n

floating-point operations (times a proportionality constant),” and “The execution time of an FFT

algorithm depends on the transform length. It is fastest when the transform length is a power of two,

and almost as fast when the transform length has only small prime factors. It is typically slower for

transform lengths that are prime or have large prime factors.” Since the sequence length is not a power

of 2 and it is a prime number, i.e. the standard algorithm cannot be used and the processing time is

much longer than it would be otherwise.

5. Write a MATLAB function that implements a linear convolution of any two input sequences of any

length using power-of-two FFT's. (You can call the MATLAB fft function with an optional argument

that specifies the sequence length; specify a length that is equal to a power of two.) Include a listing

of your function. Generate two sequences of length 2
12

. (It doesn't matter what they are.) Convolve

the two sequences with your function and with conv. Compare the result to make sure they're the

same, and compare the time required to run them. (You may need to accumulate the time required

for 1000 runs and then average.)

Mason Nixon

ELEC 5410 Page 3

Dr. Stanley Reeves

October 8, 2010

function output = num5(x1,x2)
 N1 = length(x1);
 N2 = length(x2);

 N3 = N1+N2-1;
 t4=0;
 for a=1:1000
 t=cputime;
 prod=fft(x1,N3).*fft(x2,N3);
 myconv=ifft(prod);
 t4=t4+cputime-t;
 end
 tfftconv=t4/1000;
 t5=0;
 for a=1:1000
 t=cputime;
 mconv=conv(x1,x2);
 t5=t5+cputime-t;
 end
 tconv=t5/1000;
 output={myconv, tfftconv, mconv, tconv};
end

 Figure1 Figure2

The average of 1000 time trials taken by the inverse of the product of FFTs is 0.00655 seconds, while the

time taken for the convolution is 0.03031 seconds.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200
Convolution Using Inverse of Product of ffts

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200
Convolution Using conv Function

Mason Nixon

ELEC 5410 Page 4

Dr. Stanley Reeves

October 8, 2010

6. 6410 or extra credit for 5410: Write a MATLAB function that implements a non-power-of-two FFT

using power-of-two FFT's, according to the method discussed in class in which the FFT is transformed

into a convolution problem. You may use the MATLAB FFT to implement the required convolution, as

long as it is called so that it computes a power-of-two FFT. Compare the timing on a random sequence

of length 999,983 to the MATLAB FFT. Include a listing of your function.

function output = num6(x)

 N = nextpow2(length(x));

 t6=0;

 for a=1:1000

 t=cputime;

 myfft=fft(x,2^N);

 t6=t6+cputime-t;

 end

 tfft=t6/1000;

 t7=0;

 for a=1:1000

 t=cputime;

 mfft=fft(x);

 t7=t7+cputime-t;

 end

 tmfft=t7/1000;

 output={myfft,t6,mfft,t7};

end

The average of 1000 time trials taken by the power-of-two method is 0.29688 seconds, while the non

power-of-two FFT took 2.1875 seconds. The power-of-two method proves to be 7.37 times faster.

