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I.  Introduction 

  

The most difficult part of learning to ride a bicycle for many people is creating enough 

momentum through pedaling in order to allow the bike to stabilize itself. Once a rider learns 

how to mount a bicycle and distribute his or her weight, the rest is up to the natural physics of 

the wheels, seat, pedals, brakes and handlebars. Imagine if this most difficult task was eased by 

taking away the necessity of stabilizing oneself when learning to ride a bike by adding a device 

that helped the rider balance.  

When an individual is first learning to ride a bicycle there is typically a device in place to 

help them called training wheels. The purpose of training wheels is to prevent the person 

learning to ride the bike from falling over if that person becomes unbalanced. Training wheels 

do not however teach a new rider how to balance since there is not generally even the 

capability of trying to balance when the two wheeled device is made into a stable four wheel 

device. This means that when the training wheels are removed after the rider learns about 

peddling and steering, that rider is suddenly introduced to an aspect of riding a bicycle that he 

or she has not had to deal with before; balancing. Our balance-assist can create the 

intermediary step and allow the rider to become more confident in their ability to control the 

bike and ultimately learn to ride the bike with no assist. 

Before a device can be made to help assist with the balancing of a rider, an 

understanding of the physics of a bicycle, specifically the bike falling, is required. When a bike is 

falling out of balance, it is as if the bicycle is making a circle to the side of the fall, pulling the 
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bike towards the center of that circle, sometimes referred to as the "circle of fall." In order to 

keep from falling into the circle of fall, otherwise known as crashing, the rider has to create a 

counter-pull out of the fall. There are two ways a rider can create this counter-pull to overcome 

the fall. One choice is to quickly speed up the bicycle. The other is to quickly tighten the radius 

of the circle of fall by turning the front tire into the direction of fall. Experienced riders 

instinctively do both as required. What we propose to do is create the counter-pull necessary to 

allow for the rider to remain upright by using a third method. 

Beyond teaching someone how to ride a bicycle, the balance assist also has application 

in rehabilitation of people with inner ear problems, which can cause a deficiency in the ability 

to self-balance, or other debilitating injuries and also in aiding the elderly who have lost their 

confidence in their ability to self-balance. 

As a senior design project, this project encompasses many areas of engineering. General 

dynamic physics is involved in determining the motion of a bicycle. The problem of balancing a 

bicycle is directly comparable to the classic nonlinear control systems problem of the inverted 

pendulum. There is a great mechanical aspect of this problem in devising mounting methods 

and mass distribution of our balance assist. Lastly, there is a project management aspect of the 

project that involves time-management, money-management, and teamwork that are all well 

accounted for by our proposal. 
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II.  Bicycle Physics and Equipment Placement                 Bryan Wall 
 

The primary principal that allows a falling object, such as a bicycle, to 

have its position and angular acceleration changed by an accelerating 

flywheel is something that is called “coupled forces”. This essentially means 

that as long as the flywheel is fixed to the bicycle, the moment, also called 

torque, which is generated by the angularly accelerating flywheel, is 

transferred to the angular acceleration of the bicycle which is then used to 

rotate the bicycle back to the vertical position. There are many variables 

that must be calculated to determine what angular acceleration of the flywheel is need to 

counteract the falling motion of the bike due to gravity including the torque created by the 

bicycle falling as well as the moment of inertia of the flywheel. 

To calculate the torque of the bicycle falling we must first calculate the center of gravity, 

also known as center of mass, of the bicycle. The reason for this is because the force of the 

gravity pulling the bicycle down can be represented by a single force that is applied to the 

object at its center of mass. This is not so simple a task when trying to calculate the center of 

mass for an oddly shaped object such as a bicycle. However, we can easily calculate the center 

of mass of simple geometric shapes such as discs and rods. This is helpful due to the fact that a 

bicycle is essentially made up of two discs and a few rods. Therefore, the process to find the 

center of mass for a bicycle becomes fairly simple. All that has to be done is to find the center 

of mass of all the individual pieces of the bicycle.  Then, those individual centers of masses can 
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be added up using weighted averages to find the center of mass of the entire bicycle. Once that 

is done, the radial arm from the ground to the center of mass where the gravity acts on is 

known, and the torque of the falling bicycle can be calculated. 

Once the torque of the falling bicycle is known, that 

force can then be compensated for by accelerating the 

flywheel in the opposite direction of the falling motion of the 

bicycle. The torque of the bicycle and the torque created by the 

flywheel are related by the equation  

 

where Mb is mass of the bicycle, Rb is radius from the ground to the center of mass of the 

bicycle, αb is the angular acceleration of the bicycle, and the terms on the right side of the 

equation are the mass, radius and angular acceleration of the flywheel. It thus becomes a 

matter of calculating the necessary variables to determine how much angular acceleration of 

the flywheel is needed to move the bike. As can be seen by the equation above, the primary 

variables we need to control to keep the flywheel angular acceleration as low as possible to 

keep it within the limits of the motor are to keep the center of gravity of the bicycle as low as 

possible, have the ratio of the center of mass of the bicycle to center of mass of the flywheel as 

large as possible without overweighting the motor, and making the radius of the flywheel as 

large as possible. 

Using the above principle and concepts we can approximately model the falling of a 

bicycle and the effect that an angularly accelerating flywheel attached to the body of the 

bicycle will have on the bike. It is therefore possible to create a counter moment to the bicycle 
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falling using a flywheel while keeping the values within the capabilities of the motor and the 

stress limits of the materials for the flywheel. 

In order to keep the necessary mass, radius, and angular acceleration of the flywheel as 

small as possible compared to the torque of the bike, it is necessary to do all we can with 

equipment placing to keep the torque of the bike as low as possible. Since the torque of the 

bike is represented by the equation , and our goal is to keep T as small as 

possible, it is easy to see that to do this we need to keep the center of gravity and the total 

mass of the bike as low as possible. Keeping these goals in mind we placed the battery just 

above the pedals which is as low as we could reasonably mount it. For the motor and flywheel 

placement we were limited by the fact that they needed to stay together and that if the 

flywheel was too close to the ground then it would reduce the angle at which the bike could fall 

without the flywheel hitting the ground. We therefore chose to mount the motor, flywheel, and 

remaining circuitry on a platform above the back tire behind the seat. 

 

III.  Motor and Power Systems        Brett Smith 

Motor 

After considerable research, we chose a cordless drill motor for our design.  We selected 

an 18V Bosch drill.  This decision was beneficial for several reasons.  For one, the drill motor is 

powerful.  It is capable of spinning up to 1600 RPM and generating 500 in-lbs of torque.  

Secondly, it came with two lithium-ion batteries rated at 1.3 Ah so we would never have to wait 

on one to charge.  Also, the drill came with a quick charger that can fully charge the battery in 
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30 minutes.  Lastly, the drill has forward and reverse functionality built into it (more on that 

later). 

Motor Controller 

 As mentioned earlier, the drill has forward and reverse functionality built into it.  

However, after purchasing the drill, we discovered that it has a mechanical switch that allows 

for the reverse to be activated.  This is undesirable for a couple reasons.  Mechanical switching 

is much slower than electrical switching.  Also, to be able to switch directions in software we 

would have to have some sort of actuator to flip the switch which would just overcomplicate 

the circuitry.  We looked into designing an H-bridge circuit using transistors to allow reversing 

the voltage applied to the motor on the fly.  This would be a rather cheap and cost effective 

method.  The problem with this solution is that all the MOSFET transistors we saw had low 

current ratings.  Our drill has been measured at up to 12 amps.  In the end, we settled on a 

premade motor controller ordered off the internet.  It is rated up to 15 amps (21 amps if a heat 

sink is added).  This saves us room since it is all contained on a printed circuit board.  Plus, it is 

very easy to interface with the microcontroller. 
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Figure 1 - Motor Controller Pinout 

Wiring 

 As far as the wiring of everything, we have mounted most of the components on a 

breadboard that sits on a metal mounting plate positioned behind the bike seat.  This is the 

best option for flexibility.  The breadboard is attached to the plate by Velcro for easy removal.  

The motor controller, accelerometer, and microcontroller are all wired together on this 

breadboard.  The 18V battery is mounted to a wooden shelf below the bike seat.  We are also 

using a 9V battery to power the microcontroller, motor controller, and accelerometer.  This 

battery is mounted beside the breadboard.  Rather than, try to feed everything off the 18V 

battery, we felt it best to use a smaller battery.  This keeps the motor circuit somewhat isolated 

from our other more sensitive devices.  Since the motor does draw considerable current, we 

had to use thicker wires than the 22 gauge used on the breadboard.  The wires inside the drill 

are 14 gauge.  To be on the safe side we went ahead and wired the motor controller to the 

battery and motor using 12 gauge. 
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Figure 2 – Clockwise:  Side View of Bike, Top View of Bike, Breadboard and Motor, Battery 

 

 

 

IV.  Structural Design/Accelerometer              Mason Nixon 

Structural Design 

For the mounting hardware (See Figure 1 CAD below), we decided to use an in-house 

method for construction of the primary hardware mounting plate and mounting rods. We came 

up with the optimal dimensions for a primary mounting plate by taking into consideration the 

size of the flywheel and the amount of hardware we would need room for. Since the plate had 
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to be long enough to space the flywheel away from the bicycle wheel, it was necessary to add 

additional supports at the rear of the bike. Calvin Cutshaw assisted in the cutting and welding of 

the plate, and we assisted by rethreading the U-mounts and sought a bicycle seat to fit the seat 

pipe. 

 

Figure 3 - Mounting Plate and Flywheel 

 
 

 
 

Once the plate was fixed and level, we added the solder-less breadboard and the motor. 

Most of the mounting we did at this point is meant as a temporary solution, not intended for 

use on the final product design. We designed a wooden motor mount to affix the motor to the 

primary plate. We then used foam and Velcro to attach the solder-less breadboard to the 

primary plate. The foam is used as a damper to counter the vibration due to the motor.  
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We were able to design an electrical schematic in AutoCAD 2009, which allowed for 

ease of updates and offered a professional look. On the breadboard itself, using the schematic, 

we were able to wire all of our components using minimal space. It was necessary to use two 

different batteries because at this time we did not believe it was proficient to design a power 

system that would operate off of one power source. We mounted the accelerometer as far 

from the motor as we could to minimize the vibration caused by the motor. We also mounted it 

on the opposite support of the primary plate for the same goal. 

 

Figure 4 - Electrical Hardware Schematic 

 

 
Accelerometer 
 

For the accelerometer we decided to use the Memsic 2125, which is a low cost, dual-

axis thermal accelerometer capable of measuring tilt, acceleration, rotation, and vibration with 

a range of ±2 g. The Atmel Atmega328 can be paired with this accelerometer to test for an 
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accurate readout and simulation of operation. The Memsic 2125 has a simple digital interface: 

two pins (one for each axis) emit pulses whose duration corresponds to the acceleration of that 

axis. 

 

 

Internally, the Memsic 2125 contains a small heater. This heater warms a "bubble" of air 

within the device. When gravitational forces act on this bubble it moves. This movement is 

detected by very sensitive thermopiles (temperature sensors) and the onboard electronics 

convert the bubble position [relative to g-forces] into pulse outputs for the X and Y axis. 

 

The pulse outputs from the Memsic 2125 are set to a 50% duty cycle at 0 g. The duty 

cycle changes in proportion to acceleration and can be directly measured by the Atmel 

Atmega328 (using the Arduino Duemilanove bootloader). Figure 2 shows the duty cycle output 

from the Memsic 2125 and the formula for calculating g force. 
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The T2 duration is calibrated to 10 milliseconds at 25° C (room temperature). Knowing 

this, we can convert the formula to the following Arduino routine: 

const int xPin = 2;  // X output of the accelerometer 
const int yPin = 3;  // Y output of the accelerometer 
  // variables to read the pulse widths: 
  int pulseX, pulseY; 
  // variables to contain the resulting accelerations 
  int accelerationX, accelerationY; 
 
  // read pulse from x- and y-axes: 
  pulseX = pulseIn(xPin,HIGH);   
  pulseY = pulseIn(yPin,HIGH); 
  
  accelerationX = ((pulseX / 10) - 500) * 8; 
  accelerationY = ((pulseY / 10) - 500) * 8; 
 

In the above code, by dividing the raw pulse input pulseX - Y by 10 milliseconds and 

subtracting 1000 times 0.5 and then dividing the entire quantity by 1 over 0.125. The 

accelerationX - Y are in milli-g’s (Earth’s gravity = 1g. or 1000 milli-g’s). 

 

 z1 = (accelerationX * 9);  
  z2 = (accelerationY * 9); 
 
  //Calculate the angle to 2 decimal places by making a long into a float. 
 
  tiltX = (float)z1 / 100.0; 
  tiltY = (float)z2 / 100.0; 
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Since the output from the accelerometer is a number between 0 and 1 which 

corresponds to 0 to 90 degrees, one can multiply the acceleration calculated by 9 and divide by 

100.0 and obtain an angle out to up to 4 digits. The Memsic should provide suitable resolution 

for our feedback since the output is accurate to 1 milli-g and the Arduino should provide a 

simple interface for implementing our control system. 

V.  Balancing Control System Theory            Daniel Dunbar 

 
 

The goal of the control system is to balance the bicycle using feedback from the 

accelerometer.  This creates a closed loop control system, which is controlled by a PID 

controller.  There are two inputs into the system, the desired value of zero (a completely 

balanced system) and the feedback from the accelerometer.  These two inputs are added 

together to get an error, which is inputted into the PID controller.  The output from the PID 

controller determines the voltage applied to the motor, which affects the speed and 

acceleration of the flywheel, thus balancing the bicycle. 

 
Figure 5 - Control Loop 

 
 

To model the control system, SIMULINK was chosen.  SIMULINK is a component of the 

MATLAB package and is used to build systems from a block component level.  This allows the 
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user to create a complete system within SIMULINK using standard blocks used in control system 

theory.  SIMULINK also has a PID tuner, which will automatically tune the gains for the P,I, and 

D parts of the controller.  If an accurate model of the plant can be obtained or designed, this is 

an extremely effective tool that allows the user to look at the rise time, overshoot, etc. to find a 

controller that will suit the application best.   

Also, SIMULINK allows the user to model certain components using differential 

equations.  For example, a DC motor can be broken down to two differential equations: 

 

    and  

 

where KT, IL, R, L, and Kb are parameters of the motor. 

From these equations, one can create a model using integrators, adders, and gain 

blocks.  Thus, is on can obtain the motor parameters, one can create an accurate model of a 

motor within MATLAB and use the computational power of the program to do some useful 

analysis. 

 



17 
 

Figure 6 

 
 

 To model the control system initially in SIMULINK, an external simulated input had to 

be created.  This input represents the external forces on the bicycle, such as a person leaning or 

simply gravity working on the system.  This was added to the force created by the angular 

velocity of the motor to create the feedback portion of the system, which will be actualized by 

the accelerometer in the physical system.  For the external input, several different patterns 

were created to try to accurately simulate some forces that might occur during physical testing.     

 

 In transition to the implementation phase of the control system, the original plan was to 

use MATLAB’s built in Embedded C writer to write the code for the control system.  However, 

when we tried this, the code was much too convoluted to be able to fine tune away from 

MATLAB, so we wrote the code ourselves.  The SIMULINK model was not done in vain, though, 
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because we are using it as a theoretical basis for our control system, and we are working to 

develop an accurate transfer function that lines up with our actual motor under load.  When we 

achieve this, we will be able to use the SIMULINK model to tune the control system to optimize 

performance. 

 

 The code, as seen below, was built as a function called from the main program.  This 

allows the program to be modularized for ease of reading and helps in the debug process.  Also, 

the KP, KD, and KI constants are at the top for easy access when tuning the control system.   

 

#include "ControlSystem.h" 
 
void controlsys(int accel,int *dutycycle,unsigned char *direction) 
{ 
 
int Kp = 1; //Kp = Proportional Constant 
int Ki = 2; //Ki = Integrator Constant 
int Kd = 3; //Kd = Derivative Constant 
 
int dt = 100; //dt = sampling frequency 
 
int integrator = 0; 
int lasterror = 0; 
int derivative; 
int error; 
 
*direction = 0; // sets the output sign to positive 
error = 0 - accel; 
integrator = integrator + (error/dt); 
derivative = (error - lasterror)*dt; 
lasterror = error; 
*dutycycle = Kp*error + Ki*integrator + Kd*derivative; 
 
if (*dutycycle<0){ 
 *dutycycle = -1*(*dutycycle); 
 *direction = 1;} 
if (*dutycycle>255) 
 *dutycycle = 255; 
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}  
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VI.  Embedded System Architecture             Daniel Golden 

 

For our balancing system, we incorporated a control loop which reads accelerometer 

data, sends the data to the control system, and then sets a new corrective Duty Cycle and 

direction pin for use by our motor controller.  This control loop is shown in Figure 7 below.  
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Start
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CONTROL 
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Figure 7 - Embedded System Control Loop 

Accelerometer Filter 
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It has yet to be decided as to the best method for smoothing the data.  At this moment, 

we are not implementing a filter.  One goal for the next cycle is to implement an accurate filter. 

Control System 

To execute the control system we chose to simply encapsulate the entire system into a 

function that takes three arguments.  One is the accelerometer data and the other two are 

pointers to variables in the calling method’s scope which are updated by the control system 

function. 

Hardware Initialization 

Measuring a PWM signal on our ATmega1280 microcontroller required that we use a 

system timer and execute an edge-triggered pin Interrupt Service Routine (ISR) to measure and 

process the data.  In order to achieve the best duty cycle resolution, we used one of the 16-bit 

timers and prescaled the timer clock so that our clock would count from 0 to as close to 65535 

(2^16 – 1) as possible during one accelerometer’s PWM period.  To avoid dealing with counter 

rollovers, we simply reset the couter after every period of the accelerometer. 

Hardware Initalization Routine: 

 /* Set up pin 11 for motor controller PWM output. */ 
 DDRB |= 0x20;    //Set PB5 for output 
 PORTB |= 0x20;   //Set PB5 to Output High 
 /* Set up timer1 */ 
 TCCR1A |= _BV(COM1A1);  
 TCCR1A |= _BV(WGM11) | _BV(WGM10); 
 TCCR1B |= _BV(CS11);  // prescale F_CLK_IO by 8 
 
 /* Set up timer4 */ 
 TCCR4A |= _BV(COM4A0);// | _BV(WGM21); 
 TCCR4B |= _BV(CS41); 
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 /* This sets the input pins for Pin 49. Pin 49 is our Accelerometer PWM input. */ 
 DDRL&= ~_BV(PL0); 

PORTL&= ~_BV(PL0); 
   
 /* Set up pin 12 for motor controller direction output. */ 
 DDRB |= _BV(PB6);  //Set PB6 to output 
 PORTB |= _BV(PB6);  //Set PB6 to Output high  
 
 /* Enable Timer4 interrupts. Rising edge triggered initially */ 
 TIMSK4 |= _BV(ICIE4); 
 TCCR4B |= _BV(ICES4); 
 

Accelerometer Triggered Interrupt 

 

This is the routine that is executed on each edge of the PWM signal from the accelerometer: 

SIGNAL(SIG_INPUT_CAPTURE4){ 
 
 if ((TCCR4B & _BV(ICES4)) == _BV(ICES4)){// if currently rising edge triggered 
  /* read the period of the accelerometer pwm signal (low byte first) */ 
  AccPeriod = ICR4L; 
  AccPeriod |= (ICR4H<<8); 
  /* reset timer count to avoid dealing with rollovers */ 
  TCNT4=0;  
  /* switch to falling edge triggered interrupts */ 
  TCCR4B &= ~_BV(ICES4); 
 } 
 else{ 
  /* read the pulse width (time high) of the accelerometer pwm signal (low byte first) */ 
  AccPulseWidth = ICR4L; 
  AccPulseWidth |= (ICR4H<<8);  
  /* switch to rising edge triggered interrupts */ 
  TCCR4B |= _BV(ICES4); 
 } 
} 
 
 

Main Program Loop 

The main program loop is the first code to execute on system power-on.  This loop calls 

the hardware initialization routine, enables interrupts, and then enters the infinite control loop: 

 
int main(){ 
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 hardwareInit();    // initialize hardware 
 sei();     // enable interrupts 
 
 for(;;){// infinite program loop 
  accelY = accelerometerIn();  // calculate new accelerometer data 
  controlsys(accelY, &MotorDutyCycle, &MotorDirection);         // process control system 
  OCR1AH = ((unsigned int)MotorDutyCycle>>8);    // set new duty cycle (high byte first) 
  OCR1AL = (unsigned int)MotorDutyCycle & 0xFF; 
      
  if (MotorDirection == 1) 
   PORTB |= _BV(PB6); // direction is clockwise looking from rear ? 
  else 
   PORTB &= ~_BV(PB6); // direction is counter-clockwise looking from rear ? 
 } 
 return 0; 
} 
 

Motor Control 

In order to control the speed of our motor, we are generating a PWM signal using the 

10-bit Fast PWM mode of timer1.  To adjust the duty cycle, we write a number between 0 and 

0x3FF to OCR1A.  Writing a value of 0 produces a duty cycle of 0%.  Writing a value of 0x3FF to 

OCR1A generates a duty cycle of 100%. 

VII.  Conclusion 
 

To summarize, we propose to create a balance-assist for a bicycle that can be used on 

any standard bike. The applications are in learning to ride a bike, aiding the disabled, and aiding 

the elderly. Using control systems theory, we will mount a flywheel to a reversible motor, 

feedback accelerometer angle data into our control system, and output compensated motor 

commands to correct for the lean associated with a falling bike. Our design encompasses many 

aspects of engineering, primarily those listed in the senior design requirement as defined by 

Accreditation Board for Engineering and Technology (ABET). 


