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I.  Executive Summary                                                                                              Mason 
 

The most difficult part of learning to ride a bicycle for many people is creating enough 

momentum through pedaling in order to allow the bike to stabilize itself. Once a rider learns 

how to mount a bicycle and distribute his or her weight, the rest is up to the natural physics of 

the wheels, seat, pedals, brakes and handlebars. Imagine if this most difficult task was eased by 

taking away the necessity of stabilizing oneself. 

Understanding the physics of a bicycle is much more in depth a problem than one might 

think considering how common the device is in everyday life. When a bike is falling out of 

balance, it is as if the bicycle is making a circle to the side of the fall, pulling the bike towards 

the center of that circle, sometimes referred to as the "circle of fall." In order to keep from 

falling into the circle of fall (i.e. crashing), the rider has to create a counter-pull out of the fall. 

There are two ways a rider can create this counter-pull to overcome the fall. One choice is to 

quickly speed up the bicycle. The other is to quickly tighten (shorten) the radius of the circle of 

fall. Experienced riders instinctively do both as required. What we propose to do is create the 

counter-pull necessary to allow for the rider to remain upright. 

When someone learns to ride a bike using training wheels, they teach themselves how 

much force is required to propel themselves forward, how hard one must brake to stop, and 

also the general mechanics of the steering of a bike. There is a giant step from here to learn to 

balance oneself while accounting for those other factors once the training wheels have been 

removed. Our balance-assist can create the intermediary step and allow the rider to become 

more confident in their ability to control the bike and ultimately learn to ride the bike with no 
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assist. We plan to have certain degrees of assist so that, as one progresses, they may be able to 

have less of a counter-pull automatically generated so that they may be able to compensate 

themselves. 

Beyond teaching someone how to ride a bicycle, the balance assist also has application 

in rehabilitation of people with inner ear problems (which can cause a deficiency in the ability 

to self-balance) or other debilitating injuries and also in aiding the elderly who have lost their 

confidence in their ability to self-balance. 

As a senior design project, this project encompasses many areas of engineering. General 

dynamic physics is involved in determining the motion of a bicycle. The problem of balancing a 

bicycle is directly comparable to the classic nonlinear control systems problem of the inverted 

pendulum. There is a great mechanical aspect of this problem in devising mounting methods 

and mass distribution of our balance assist. Lastly, there is a project management aspect of the 

project that involves time-management, money-management, and teamwork that are all well 

accounted for by our proposal. 

II.  Bicycle Physics and Equipment Placement                 Bryan Wall 
 
The primary principal that allows a falling object, such as a bicycle, to have its position and 

angular acceleration changed by an accelerating flywheel is something that is called “coupled forces”. 

This essentially means that as long as the flywheel is fixed to the bicycle, the moment, also called 

torque, which is generated by the angularly accelerating flywheel, is transferred to the angular 

acceleration of the bicycle which is then used to rotate the bicycle back to the vertical position. There 

are many variables that must be calculated to determine what angular acceleration of the flywheel is 
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need to counteract the falling motion of the bike due to gravity including the 

torque created by the bicycle falling as well as the moment of inertia of the 

flywheel. 

To calculate the torque of the bicycle falling we must first calculate the 

center of gravity, also known as center of mass, of the bicycle. The reason for this is 

because the force of the gravity pulling the bicycle down can be represented by a 

single force that is applied to the object at its center of mass. This is not so simple a 

task when trying to calculate the center of mass for an oddly shaped object such as 

a bicycle. However, we can easily calculate the center of mass of simple geometric shapes such as discs 

and rods. This is helpful due to the fact that a bicycle is essentially made up of two discs and a few rods. 

Therefore, the process to find the center of mass for a bicycle becomes fairly simple. All that has to be 

done is to find the center of mass of all the individual pieces of the bicycle.  Then, those individual 

centers of masses can be added up using weighted averages to find the center of mass of the entire 

bicycle. Once that is done, the radial arm from the ground to the center of mass where the gravity acts 

on is known, and the torque of the falling bicycle can be calculated. 

Once the torque of the falling bicycle is known, that force 

can then be compensated for by accelerating the flywheel in the 

opposite direction of the falling motion of the bicycle. The torque of 

the bicycle and the torque created by the flywheel are related by the 

equation: 

     
          

     

Mb is mass of the bicycle, Rb is radius from the ground to the center 

of mass of the bicycle, αb is the angular acceleration of the bicycle, and the terms on the right side of the 

equation are the mass, radius and angular acceleration of the flywheel. It thus becomes a matter of 
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calculating the necessary variables to determine how much angular acceleration of the flywheel is 

needed to move the bike. As can be seen by the equation above, there are a few variables we can 

control to keep the flywheel angular acceleration as low as possible to keep it within the limits of the 

motor. Those condition are to keep the center of gravity of the bicycle as low as possible, have the ratio 

of the center of mass of the bicycle to center of mass of the flywheel as large as possible without 

overweighting the motor, and making the radius of the flywheel as large as possible. 

Using the above principle and concepts we can approximately model the falling of a bicycle and 

the effect that an angularly accelerating flywheel attached to the body of the bicycle will have on the 

bike. It is therefore possible to create a counter moment to the bicycle falling using a flywheel while 

keeping the values within the capabilities of the motor and the stress limits of the materials for the 

flywheel. 

In order to keep the necessary mass, radius, and angular acceleration of the flywheel as small as 

possible compared to the torque of the bike, it is necessary to do all we can with equipment placing to 

keep the torque of the bike as low as possible. Since the torque of the bike is represented by the 

equation         
    , and our goal is to keep T as small as possible, it is easy to see that to do 

this we need to keep the center of gravity and the total mass of the bike as low as possible. Keeping 

these goals in mind we placed the battery just above the peddles which is as low as we could reasonably 

mount it. For the motor and flywheel placement we were limited by the fact that they needed to stay 

together and that if the flywheel was too close to the ground then it would reduce the angle at which 

the bike could fall without the flywheel hitting the ground. We therefore chose to mount the motor, 

flywheel, and remaining circuitry on a platform above the back tire behind the seat. 
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III.  Motor and Power Systems        Brett Smith 

Motor 

After considerable research, we chose a cordless drill motor for our design.  We selected 

an 18V Bosch drill.  This decision was beneficial for several reasons.  For one, the drill motor is 

powerful.  It is capable of spinning up to 1600 RPM and generating 500 in-lbs of torque.  

Secondly, it came with two lithium-ion batteries rated at 1.3 Ah so we would never have to wait 

on one to charge.  Also, the drill came with a quick charger that can fully charge the battery in 

30 minutes.  Lastly, the drill has forward and reverse functionality built into it (more on that 

later).  One problem we began to notice in the drill motor was the fact that it was geared.  The 

motor had two different sections that fit together.  The motor by itself was not powerful 

enough by itself for our purposes.  However, the gears added another wrinkle to or control 

system.  The transmission had a clutch of some sort that would brake almost instantaneously.  

This created a massive amount of unwanted torque.  Also, as the drill turned over time, the 

motor and transmission sections would become loose and slide apart.  For these reasons, we 

decided to pursue another motor.  Calvin Cutshaw was generous enough to lend us a 24V 

motor that was no longer being used by the autonomous lawnmower team.  It was rated up to 

500W and 4300 RPM.  It was much more powerful than the drill motor.  It had a much 

smoother response when changing directions as well. 
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24V Motor 

Motor Controller 

 As mentioned earlier, the drill has forward and reverse functionality built into it.  

However, after purchasing the drill, we discovered that it has a mechanical switch that allows 

for the reverse to be activated.  This is undesirable for a couple reasons.  Mechanical switching 

is much slower than electrical switching.  Also, to be able to switch directions in software we 

would have to have some sort of actuator to flip the switch which would just overcomplicate 

the circuitry.  We looked into designing an H-bridge circuit using transistors to allow reversing 

the voltage applied to the motor on the fly.  This would be a rather cheap and cost effective 

method.  The problem with this solution is that all the MOSFET transistors we saw had low 

current ratings.  Our drill has been measured at up to 12 amps.  In the end, we settled on a 

premade motor controller ordered off the internet.  It is rated up to 15 amps (21 amps if a heat 

sink is added).  This saves us room since it is all contained on a printed circuit board.  Plus, it is 

very easy to interface with the microcontroller.  One of the chips melted on our motor driver 
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during the final week so we had to order a new one.  We decided on a Sabertooth 25A motor 

controller.  This upgrade provided us more cushion to effectively power our new 24V motor. 

 

Sabertooth 2x25 Motor Driver 

Wiring 

 As far as the wiring of everything, we have mounted most of the components on a 

breadboard that sits on a metal mounting plate positioned behind the bike seat.  This is the 

best option for flexibility.  The breadboard is attached to the plate by Velcro for easy removal.  

The motor controller, accelerometer, and microcontroller are all wired together on this 

breadboard.  The 18V battery is mounted to a wooden shelf below the bike seat.  We wanted to 

power everything with a single battery but still keep the sensitive electronics (microcontroller, 

accelerometer, IR sensors) separate from the motor.  To accomplish this we acquired a DC/DC 

converter.  It is capable of converting an 18V to 30V signal into a regulated 5V signal.  Since the 

motor does draw considerable current, we had to use thicker wires than the 22 gauge used on 

the breadboard.  The wires inside the drill are 14 gauge.  To be on the safe side we went ahead 
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and wired the motor controller to the battery and motor using 12 gauge.  To make our lives 

easier, we implemented a switch that was mounted on the handlebars.  This was used to cut 

power to the motor without having to constantly unhook the battery.  Later, we also used this 

switch as a digital input for calibrating the balance point of our control system.  By flipping the 

switch at the point that seemed the most balanced, we could set our reference point for the 

control system. 

 

 

 

 

 

Final Version of Bike 

18V Lithium Ion Rechargeable Drill Battery 
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IV.  Structural Design/Sensors/Wiring             Mason Nixon 

Structural Design 

For the mounting hardware (See Figure 3 CAD below), we decided to use an in-house method 

for construction of the primary hardware mounting plate and mounting rods. We came up with the 

optimal dimensions for a primary mounting plate by taking into consideration the size of the flywheel 

and the amount of hardware we would need room for. Since the plate had to be long enough to space 

the flywheel away from the bicycle wheel, it was necessary to add additional supports at the rear of the 

bike. Calvin Cutshaw assisted in the cutting and welding of the plate, and we assisted by rethreading the 

U-mounts and sought a bicycle seat to fit the seat pipe. 

 
Mounting Plate and Flywheel 

 
 
 
 

Once the plate was fixed and level, we added the solder-less breadboard and the motor. Most of 

the mounting we did at this point is meant as a temporary solution, not intended for use on the final 

product design. We designed a wooden motor mount to affix the motor to the primary plate. We then 
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used foam and Velcro to attach the solder-less breadboard to the primary plate. The foam is used as a 

damper to counter the vibration due to the motor.  

We were able to design an electrical schematic in AutoCAD 2009, which allowed for ease of 

updates and offered a professional look. On the breadboard itself, using the schematic shown in Figure 4 

below, we were able to wire all of our components using minimal space. It was necessary to use two 

different batteries because at this time we did not believe it was proficient to design a power system 

that would operate off of one power source. We mounted the accelerometer as far from the motor as 

we could to minimize the vibration caused by the motor. We also mounted it on the opposite support of 

the primary plate for the same goal. 

Electrical Hardware Schematic 
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Sensors 

Accelerometer 

At first, we were utilizing an accelerometer to detect our angular position. For the 

accelerometer we decided to use the Memsic 2125, which is a low cost, dual-axis thermal accelerometer 

capable of measuring tilt, acceleration, rotation, and vibration with a range of ±2 g. The Atmel 

Atmega328 can be paired with this accelerometer to test for an accurate readout and simulation of 

operation. The Memsic 2125 has a simple digital interface: two pins (one for each axis) emit pulses 

whose duration corresponds to the acceleration of that axis. 

 

 
 

Internally, the Memsic 2125 contains a small heater. This heater warms a "bubble" of air within 

the device. When gravitational forces act on this bubble it moves. This movement is detected by very 

sensitive thermopiles (temperature sensors) and the onboard electronics convert the bubble position 

[relative to g-forces] into pulse outputs for the X and Y axis. 

The pulse outputs from the Memsic 2125 are set to a 50% duty cycle at 0 g. The duty cycle 

changes in proportion to acceleration and can be directly measured by the Atmel. Figure 2 shows the 

duty cycle output from the Memsic 2125 and the formula for calculating g force. 
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The T2 duration is calibrated to 10 milliseconds at 25° C (room temperature). Knowing this, we 

can convert the formula to the following embedded C code routine as an example: 

 
const int xPin = 2;  // X output of the accelerometer 
const int yPin = 3;  // Y output of the accelerometer 
  // variables to read the pulse widths: 
  int pulseX, pulseY; 
  // variables to contain the resulting accelerations 
  int accelerationX, accelerationY; 
 
  // read pulse from x- and y-axes: 
  pulseX = pulseIn(xPin,HIGH);   
  pulseY = pulseIn(yPin,HIGH); 
  
  accelerationX = ((pulseX / 10) - 500) * 8; 
  accelerationY = ((pulseY / 10) - 500) * 8; 
 

In the above code, by dividing the raw pulse input pulseX - Y by 10 milliseconds and subtracting 

1000 times 0.5 and then dividing the entire quantity by 1 over 0.125. The accelerationX - Y are in milli-g’s 

(Earth’s gravity = 1g. or 1000 milli-g’s). 

 
 z1 = (accelerationX * 9);  
  z2 = (accelerationY * 9); 
 
  //Calculate the angle to 2 decimal places by making a long into a float. 
 
  tiltX = (float)z1 / 100.0; 
  tiltY = (float)z2 / 100.0; 
 

Since the output from the accelerometer is a number between 0 and 1 which corresponds to 0 

to 90 degrees, one can multiply the acceleration calculated by 9 and divide by 100.0 and obtain an angle 
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out to up to 4 digits. The Memsic would have provided suitable resolution for our feedback since the 

output is accurate to 1 milli-g and the Atmel Atmega328 microprocessor should provide a simple 

interface for implementing our control system.  

 
IR Analog Range Sensors 

 
The problem with the accelerometer is that when we apply a corrective acceleration with our 

flywheel, this creates an opposing angular acceleration reading in our accelerometer that could 

potentially give us a reading of a position that is inaccurate and cause instability in our control system. 

Also, we are limited by the digital PWM output that has a maximum speed of 10ms per reading. These 

inadequacies led us to determine that a more suitable sensor would be infrared range sensors. We 

decided on the Sharp analog IR GP2D12 range sensor. This sensor takes a continuous distance reading 

and returns a corresponding analog voltage proportional to the distance with a range of 10cm (~4") to 

80cm (~30").  

Placing two of these sensors at the same height and mounting them in fixed positions on the 

bicycle, we were able to determine any tilt in the bike by comparing their heights above the ground. If 

the bike leaned to one side, then the height reading of the sensor on the side of the tilt would be lower. 

Taking the difference of the two heights yields a slope that can be fed into our control system and used 

as feedback. This method, illustrated below, provides an effective means of feedback for control and 

allowed us to make extremely accurate corrective action. Also, since the sensor is analog, our system 

was sped up almost 5 times as fast, since we could read in data at about 2.75ms – limited only by the 

Atmel328. 
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Illustration of IR Sensor Concept 

 
 
It is also illustrated in the code Daniel Golden wrote below: 
 
int sensorValue; 

 

int readIR(int sensor) { 

 if (sensor == IR_LEFT){ 

  // read the value from the left IR sensor: 

  ADMUX = _BV(REFS0) | 0;  // select channel ADC0 

  ADCSRA |= _BV(ADSC);  // start the conversion 

  loop_until_bit_is_clear(ADCSRA, ADSC);  

// wait for conversion to complete 

  sensorValue = ADC; 

 }else if (sensor == IR_RIGHT){ 

  // read the value from the right IR sensor: 

  ADMUX = _BV(REFS0) | 1;  // select channel ADC1 

  ADCSRA |= _BV(ADSC);  // start the conversion 

  loop_until_bit_is_clear(ADCSRA, ADSC);  

// wait for conversion to complete 

  sensorValue = ADC; 

 } 

 return sensorValue; 

} 

 

irDiff = readIRsmoothed(IR_LEFT, ir_LH_accum, &ir_start_cnt_LH) - 

readIRsmoothed(IR_RIGHT, ir_RH_accum, &ir_start_cnt_RH);  

// calculate new accelerometer data 

controlsys(irDiff, &MotorDutyCycle, &integrator, &lasterror);  

// process control system 
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Although a large step above the accelerometer, the infrared range sensor had many potential 

disadvantages as well. Of course, the most noteworthy is distortion from other sources of infrared light. 

Infrared from sunlight would be the largest potential attenuator, but incandescent lights, remote 

controls, and nearly anything that generates heat is a source of infrared radiation and could distort the 

bicycle control system. The second disadvantage to this approach is the need for a nearly perfectly lvel 

surface. Any discontinuity in the floor or ground that the sensor encounters could cause an otherwise 

balanced bike to be pushed to one side, since the control system could read the height difference as the 

beginning of a fall. 

 

We were able to gain accurate tilt measurements from the IR sensors, but as noted in the above 

paragraph they were far from ideal. Our design could be optimized by a gyroscopic accelerometer, or an 

accelerometer that gives position measurements independent of angular acceleration. These sensors 

could of have been implemented, but due to time and cost constraints, we were unable to utilize them 

in our design. 

Moving Average Filter 

For smoothing of sensor data, it is necessary to implement a smoothing filter. One such filter 

with excellent results is the moving average filter (MAF). The moving average filter accumulates the 

inputs and averages them for each new point as described in the following equation: 

 

     
 

 
       

   

   

 

 
From which the output, y, may be calculated from the input x and where M is the number of 

points averaged by the filter. As an example, in a 3 point moving average filter, point 10, for instance, in 

the output signal is given by: 
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The moving average filter is a form of convolution. As noted in The Scientist and Engineer's 

Guide to Digital Signal Processing By Steven W. Smith, Ph.D, “You should recognize that the moving 

average filter is a convolution using a very simple filter kernel. For example, a 5 point filter has the filter 

kernel: …0, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 0…. That is, the moving average filter is a convolution of the 

input signal with a rectangular pulse having an area of one.” 2 

The listing below shows our program with a 5-point filter that we utilize to implement the 

moving average filter. 

//Moving Average Filter Implementation for LPF of sensor data 

 

float sensorSmoothed(float accumulator[], int a) { 

  int i=0; 

  float maf; 

  float sum=0; 

  for(i=0;i<=3;i++){ 

    accumulator[i]=accumulator[i+1];  

//Shift out the oldest 

  } 

  accumulator[4]=sensorIn();  

//Retrieve most recent noisy data point 

  for(i=0;i<=4;i++){ 

    sum+=accumulator[i]; //Sum of 5 terms 

  } 

  maf=sum/5; //Average of the 5 data points 

  a=a+1; //Increment through first 5 points to initially fill 

  if(a<5){ 

    return sensorIn(); 

  } //Wait for first 5 points to be accumulated 

  else{ 

    return maf; 

  } 

} 

 
MAF Noise Reduction vs. Step Response 

 
The moving average filter has an extremely simple implementation. In commenting on this, Dr. 

Steven Smith says, “This situation is truly ironic. Not only is the moving average filter very good for many 

applications, it is optimal for a common problem, reducing random white noise while keeping the 
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sharpest step response.”2 While our noise is not always random, the MAF is invaluable when trying to 

smooth and isolate a sensors data. 

The Result of a Signal Filtered with a MAF2 

 
Figure 15-1 demonstrates a MAF filtering a signal. The original noisy signal is show in (a). The 

result in the step response as shown in (b) is that the amplitude of the noise is depleted, while at the 

same time the edges taper off, which is not the most ideal of situations for a step response. In (c), the M 

value is increased by a factor of 5. The step response contains even less noise, but the sharpness in the 

edge is nearly lost. Although sharpness is lost, the MAF outperforms all other linear filters as far as 

“lowest noise for a given edge sharpness”2. Also, as noted in The Scientist and Engineer's Guide to Digital 

Signal Processing, “The amount of noise reduction is equal to the square-root of the number of points in 

the average. For example, a 100 point moving average filter reduces the noise by a factor of 10.”2 

 
MAF Frequency Response 

The frequency response of an MAF is shown below in Figure 15-2. The MAF frequency response 

is simply the Fourier transform of a rectangular pulse as described below: 
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The above equation is for an M-point MAF from which the frequency, f, shifts between 0 and 0.5 

and H[f=0]=1. As seen in the figure below, there is very little stopband attenuation and the response has 

a slow roll-off. This illustrates a major disadvantage of the MAF: it cannot isolate different bands of 

frequencies. To summarize, the moving average is more than adequate as a smoothing filter, however, 

as indicated in the frequency response, it is a horrible low pass filter. 2 

Frequency Response of MAF2 

 

V.  Balancing Control System Theory            Daniel Dunbar 

 
 

The goal of the control system is to balance the bicycle using feedback from the accelerometer 

or the IR sensors.  This creates a closed loop control system, which is controlled by a PID controller.  

There are two inputs into the system, the desired value of zero (a completely balanced system) and the 

feedback from either the accelerometer or the IR sensors.  We implemented both feedback designs on 

one bike.  In the future, a common filter may be used to get a more accurate feedback system.  These 

two inputs are added together to get an error, which is inputted into the PID controller.  The output 

from the PID controller determines the voltage applied to the motor, which affects the speed and 

acceleration of the flywheel, thus balancing the bicycle. 
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To model the control system, SIMULINK was chosen.  SIMULINK is a component of the MATLAB 

package and is used to build systems from a block component level.  This allows the user to create a 

complete system within SIMULINK using standard blocks used in control system theory.  SIMULINK also 

has a PID tuner, which will automatically tune the gains for the P,I, and D parts of the controller.  If an 

accurate model of the plant can be obtained or designed, this is an extremely effective tool that allows 

the user to look at the rise time, overshoot, etc. to find a controller that will suit the application best.   

Also, SIMULINK allows the user to model certain components using differential equations.  For 

example, a DC motor can be broken down to two differential equations: 

     

  
  

  

  
        and 

     

  
  

 

 
                  

where KT, IL, R, L, and Kb are parameters of the motor. 

From these equations, one can create a model using integrators, adders, and gain blocks.  Thus, 

is on can obtain the motor parameters, one can create an accurate model of a motor within MATLAB 

and use the computational power of the program to do some useful analysis. 
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 To model the control system initially in SIMULINK, an external simulated input had to be 

created.  This input represents the external forces on the bicycle, such as a person leaning or simply 

gravity working on the system.  This was added to the force created by the angular velocity of the motor 

to create the feedback portion of the system, which will be actualized by either the accelerometer or the 

IR sensors in the physical system.  For the external input, several different patterns were created to try 

to accurately simulate some forces that might occur during physical testing.     

 In transition to the implementation phase of the control system, the original plan was to use 

MATLAB’s built in Embedded C writer to write the code for the control system.  However, when we tried 

this, the code was much too convoluted to be able to fine tune away from MATLAB, so we wrote the 

code ourselves.  The SIMULINK model was not done in vain, though, because we are using it as a 

theoretical basis for our control system, and we are working to develop an accurate transfer function 
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that lines up with our actual motor under load.  When we achieve this, we will be able to use the 

SIMULINK model to tune the control system to optimize performance. 

 In tuning the control system, we realized that having to reprogram the microcontroller for any 

slight change in our constants was not only time consuming and tedious, but it also did not allow us to 

see immediate changes.  To fix this problem we connected three potentiometers to our 

microcontroller’s analog inputs. The pots acted as voltage dividers into the input, so we could vary the 

amount of voltage going into the input. This enabled us to read in different values in real time which we 

made correspond to the KP, KI, and KD values, so we could tune our control system in real time instead of 

reprogramming the microcontroller every time we wanted to adjust a gain constant. 

 The code, as seen as ControlSystem.c on the CD, was built as a function called from the main 

program.  This allows the program to be modularized for ease of reading and helps in the debug process.  

Also, the KP, KD, and KI constants are at the top for easy access when tuning the control system.  We 

made several changes from the Cycle 1 code. First, we added a calibration feature to calibrate our 

desired value to make up for misalignment of our sensors. Second, we added the IR sensor portion of 

the control system; when we used the IR sensors, we had to completely change our gain constant values 

because our input to the control system was different. Next, we added the potentiometer tuning 

system. Finally, we added pre-compiler if-statements to change between the accelerometer control 

system and the IR control system depending on define statements found elsewhere in the program. 

VI.  Embedded System Architecture             Daniel Golden 

Previously, our architecture was designed for using an accelerometer as our control 

system feedback.  As already explained, this was problematic since our accelerometer does not 

isolate dynamic acceleration of motor and bike from the static acceleration of gravity.  So, for 
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our second generation balancing system, we incorporated a control loop which reads Infrared 

sensor data from two sensors, smoothes the data, sends the difference of that data to the 

control system, and then sets a new corrective Duty Cycle and direction pin for use by our 

motor controller.  This second generation control loop is shown in Figure 1 below.  

 

Set Motor Duty 

Cycle

Set Motor 

Direction Pin

Start

Pass Difference to 

Control system

CONTROL 

SYSTEM

Get new Duty 

Cycle from Control 

System

Get new Duty 

Cycle from Control 

System

LEFT 

INFRARED 

SENSOR

FILTER

Get filtered IR 

sensor distances

Initialize hardware

Calculate Their 

Difference

RIGHT

INFRARED 

SENSOR 

FILTER

 

Figure 1 - Embedded System Control Loop 

Infrared Distance Filter 

Both the left and the right infrared sensor filters are of the moving average type.  The 

filter smoothes N points.  N can be changed by changing the following line in the code in 

“includes.h”: 

 #define MAFSIZE      12     // size of the moving average filters 

 



25 
 

Control System 

To execute the second generation control system we chose to simply encapsulate the 

entire system into a function that takes four arguments.   

 controlsys( int  IRdiff, 

   int  *MotorDutyCycle,  

   float  *integrator,  

   float  *lasterror ) 

 

The first is the difference of the two IR sensors and the other three are pointers to 

variables in the calling method’s scope which are updated by the control system function. 

Hardware Initialization 

In our first generation system, we were implementing an accelerometer.   However, since we 

are no longer using it, we have no need to remove the PWN measurement ability.  On the other hand, 

our infrared sensors are using the analog inputs into our microcontroller.  Therefore, to use these pins, 

we must set up our microcontroller’s registers to perform this action. 

Hardware Initalization Routine: 
 /* Set up timer0 for motor control */ 
 TCCR0A |= _BV(COM0A1);  // inverted pwm outputs 
 TCCR0A |= _BV(WGM01) | _BV(WGM00); // Phase correct mode - ICR0 is top 
 TCCR0B |= _BV(CS01);    // prescale F_CLK_IO by 8 
 

/* Set analog inputs for reading IR sensors. */ 
 ADCSRA |= _BV(ADPS2)|_BV(ADPS1)|_BV(ADPS0); // ADC prescale factor is 128  
 DIDR1 |= _BV(AIN1D) | _BV(AIN0D); // disable digital input buffers on ADC pins 
 ADCSRA |= _BV(ADEN);   // enable ADC conversions 
 ADMUX  |= _BV(REFS0);   // AVCC with external capacitor at AREF pin 
 
 /* Set up pin 6 for motor controller PWM output. */ 
 DDRD |= _BV(PD6);    //Set PD6 for output 
 PORTD |= _BV(PD6);   //Set  PD6 to Output High 
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Main Program Loop 

The main program loop is the first code to execute on system power-on.  This loop calls 

the hardware initialization routine, enables interrupts, and then enters the infinite control loop: 

 
int main(){ 
 
 hardwareInit();    // initialize hardware 
 _delay_ms(50); 

sei();     // enable interrupts 
 
 for(;;){// infinite program loop 
  /* calculate new IR difference */  

irDiff = readIRsmoothed(IR_LEFT, ir_LH_accum, &ir_start_cnt_LH) – 
readIRsmoothed(IR_RIGHT, ir_RH_accum, &ir_start_cnt_RH);   

   
  /* process control system */ 

controlsys(irDiff, &MotorDutyCycle, &integrator, &lasterror); 
 OCR0A = MotorDutyCycle; // set the output PWM 
 } 
 return 0; 
} 
 

Motor Control 

In order to control the speed of our motor, we are generating a PWM signal using the 8-

bit PWM mode of timer0.  To adjust the motor’s speed and direction, we write a number 

between 0 and 255 to OCR0A where 127 is the midpoint where the motor is stopped.  The 

maximum motor speeds for both directions are obtained by writing either a 0 or a 255 to 

OCR0A.  In other words, writing a value of 0 produces a duty cycle of 100% in one direction.  

Writing a value of 0xFF to OCR0A generates a duty cycle of 100% in the other direction. 
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VII.  Administration                                                                                      Daniel Golden 
 
Budget 

Item  Price  

Batteries/Charger  $153.49  

Motor  $60.00*  

Flywheel  $100.00*  

Bike  $50.00*  

Microcontroller  $29.99  

Motor Controller  $124.99  

Mounting Hardware  $100.00*  

IR Sensors/Accelerometer  $60.89  

Developmental Costs  $30.00*  

Total  $709.36  

 

Timeline 

For timeline creation, we used Microsoft Project.  Project has a Gantt Chart tool, which allowed 

us to orderly schedule tasks – ultimately streamlining the design process.  The following figure 

is an example of our timeline: 
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Organization 

For source control organization and versioning, we chose to use Subversion.  Our subversion 

host is ProjectLocker and our client software is TortoiseSVN.  Both are free services, and work 

together to give us the ability to maintain our code on external servers and to revise or review 

our code remotely on multiple computers.  The following are screenshots of the website 

services. 

     

 

Redmine – Content Management System 

In order to facilitate organization, we decided to use a content management system called 

Redmine.  There are several advantages to this system including issue tracking, revision control, 

Gantt chart, wiki, news, activity feed, activity notifications, and resource management.  The 

following is a screenshot of our content management system: 
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Communication 

 For technical related communication our primary method was via Redmine.  Redmine 

allowed us to chat about each issue separately from other issues – which is very important 

when there are multiple tasks being performed simultaneously.  It also helps every person on 

the team to know what is going on.   

A secondary mode of communication was via email.  Our email address is 

aurascl@googlegroups.com.  However, this mode of communication was almost solely for use 

to remind all members of meetings and coordinate scheduling. 

VIII.  Conclusion 
 

To summarize, we propose to create a balance-assist for a bicycle that can be used on 

any standard bike. The applications are in learning to ride a bike, aiding the disabled, and aiding 

the elderly. Using control systems theory, we will mount a flywheel to a reversible motor, 

mailto:aurascl@googlegroups.com
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feedback accelerometer angle data into our control system, and output compensated motor 

commands to correct for the lean associated with a falling bike. Our design encompasses many 

aspects of engineering, primarily those listed in the senior design requirement as defined by 

Accreditation Board for Engineering and Technology (ABET). 

IX.  Appendix                                                                                                                   

 

Contributions 

 We all contributed to this project in many different areas. Below, we will list the main items that 

were worked on and by whom: 

Daniel Dunbar – Daniel led the Control System design aspect of the project. He also worked on 

debugging the integration with the microcontroller, flywheel design, debugging the dc-to-dc converter, 

wiring the circuits, and various presentations of the project. 

Daniel Golden – Golden Dan was the project manager for the whole project and did most of the 

management work scheduling meetings, forming agendas, etc. He also led in the microcontroller 

integration aspect of the project, including implementation code for the IR sensors. He also helped in 

flywheel design, control system tuning, motor acquisition, and poster design. 

Mason Nixon – Mason led the sensor design aspect of the process, deciding on both the accelerometer 

and IR sensors we used and writing preliminary code to implement them. He also led in procuring a dc-

to-dc converter, making a schematic of the wiring, wiring the circuits, and structure design. He helped in 

flywheel design, poster assembly, and access to tools found in the SPARC lab. 



31 
 

Brett Smith – Brett led in purchasing, documentation, such as weekly status reports and Cycle 1 and 2 

binders, and power system design, including batteries, motors, and motor controllers. He helped in 

flywheel design, wiring the circuits, tuning the control system, structure design, and poster design. 

Bryan Wall – Bryan led in mechanical design and flywheel design. He also helped in control system 

tuning, structure design, wiring the circuits, debugging power system and coding, and PowerPoint 

compilation.  

 Every member of this team played a big part in the overall project and had a hand in most, if not 

all, of the aspects, whether in the design phase or the implementation phase or both. Thus, the list 

above should not be taken as an exhaustive list of the effort of our team as a whole.  
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