

ASSISTED-BALANCE BICYCLE

SENIOR DESIGN

FALL 2010

CYCLE 2 REPORT

12/06/2010

Daniel Dunbar, Daniel Golden, Mason Nixon, Brett Smith,

and Bryan Wall

2

Table of Contents

I. Executive Summary 3

II. Bicycle Physics and Equipment Placement………………..Bryan Wall 4

III. Motor and Power Systems………………………………………..Brett Smith 7

IV. Structural Design/Sensors…………….…………………………..Mason Nixon 11

V. Balancing Control System Theory……………………………..Daniel Dunbar 20

VI. Embedded System Architecture………………………………..Daniel Golden 23

VII. Administration…………………………………………………………..Daniel Golden 27

VIII. Conclusion 29

IX. Appendix 30

3

I. Executive Summary Mason

The most difficult part of learning to ride a bicycle for many people is creating enough

momentum through pedaling in order to allow the bike to stabilize itself. Once a rider learns

how to mount a bicycle and distribute his or her weight, the rest is up to the natural physics of

the wheels, seat, pedals, brakes and handlebars. Imagine if this most difficult task was eased by

taking away the necessity of stabilizing oneself.

Understanding the physics of a bicycle is much more in depth a problem than one might

think considering how common the device is in everyday life. When a bike is falling out of

balance, it is as if the bicycle is making a circle to the side of the fall, pulling the bike towards

the center of that circle, sometimes referred to as the "circle of fall." In order to keep from

falling into the circle of fall (i.e. crashing), the rider has to create a counter-pull out of the fall.

There are two ways a rider can create this counter-pull to overcome the fall. One choice is to

quickly speed up the bicycle. The other is to quickly tighten (shorten) the radius of the circle of

fall. Experienced riders instinctively do both as required. What we propose to do is create the

counter-pull necessary to allow for the rider to remain upright.

When someone learns to ride a bike using training wheels, they teach themselves how

much force is required to propel themselves forward, how hard one must brake to stop, and

also the general mechanics of the steering of a bike. There is a giant step from here to learn to

balance oneself while accounting for those other factors once the training wheels have been

removed. Our balance-assist can create the intermediary step and allow the rider to become

more confident in their ability to control the bike and ultimately learn to ride the bike with no

4

assist. We plan to have certain degrees of assist so that, as one progresses, they may be able to

have less of a counter-pull automatically generated so that they may be able to compensate

themselves.

Beyond teaching someone how to ride a bicycle, the balance assist also has application

in rehabilitation of people with inner ear problems (which can cause a deficiency in the ability

to self-balance) or other debilitating injuries and also in aiding the elderly who have lost their

confidence in their ability to self-balance.

As a senior design project, this project encompasses many areas of engineering. General

dynamic physics is involved in determining the motion of a bicycle. The problem of balancing a

bicycle is directly comparable to the classic nonlinear control systems problem of the inverted

pendulum. There is a great mechanical aspect of this problem in devising mounting methods

and mass distribution of our balance assist. Lastly, there is a project management aspect of the

project that involves time-management, money-management, and teamwork that are all well

accounted for by our proposal.

II. Bicycle Physics and Equipment Placement Bryan Wall

The primary principal that allows a falling object, such as a bicycle, to have its position and

angular acceleration changed by an accelerating flywheel is something that is called “coupled forces”.

This essentially means that as long as the flywheel is fixed to the bicycle, the moment, also called

torque, which is generated by the angularly accelerating flywheel, is transferred to the angular

acceleration of the bicycle which is then used to rotate the bicycle back to the vertical position. There

are many variables that must be calculated to determine what angular acceleration of the flywheel is

5

need to counteract the falling motion of the bike due to gravity including the

torque created by the bicycle falling as well as the moment of inertia of the

flywheel.

To calculate the torque of the bicycle falling we must first calculate the

center of gravity, also known as center of mass, of the bicycle. The reason for this is

because the force of the gravity pulling the bicycle down can be represented by a

single force that is applied to the object at its center of mass. This is not so simple a

task when trying to calculate the center of mass for an oddly shaped object such as

a bicycle. However, we can easily calculate the center of mass of simple geometric shapes such as discs

and rods. This is helpful due to the fact that a bicycle is essentially made up of two discs and a few rods.

Therefore, the process to find the center of mass for a bicycle becomes fairly simple. All that has to be

done is to find the center of mass of all the individual pieces of the bicycle. Then, those individual

centers of masses can be added up using weighted averages to find the center of mass of the entire

bicycle. Once that is done, the radial arm from the ground to the center of mass where the gravity acts

on is known, and the torque of the falling bicycle can be calculated.

Once the torque of the falling bicycle is known, that force

can then be compensated for by accelerating the flywheel in the

opposite direction of the falling motion of the bicycle. The torque of

the bicycle and the torque created by the flywheel are related by the

equation:

Mb is mass of the bicycle, Rb is radius from the ground to the center

of mass of the bicycle, αb is the angular acceleration of the bicycle, and the terms on the right side of the

equation are the mass, radius and angular acceleration of the flywheel. It thus becomes a matter of

6

calculating the necessary variables to determine how much angular acceleration of the flywheel is

needed to move the bike. As can be seen by the equation above, there are a few variables we can

control to keep the flywheel angular acceleration as low as possible to keep it within the limits of the

motor. Those condition are to keep the center of gravity of the bicycle as low as possible, have the ratio

of the center of mass of the bicycle to center of mass of the flywheel as large as possible without

overweighting the motor, and making the radius of the flywheel as large as possible.

Using the above principle and concepts we can approximately model the falling of a bicycle and

the effect that an angularly accelerating flywheel attached to the body of the bicycle will have on the

bike. It is therefore possible to create a counter moment to the bicycle falling using a flywheel while

keeping the values within the capabilities of the motor and the stress limits of the materials for the

flywheel.

In order to keep the necessary mass, radius, and angular acceleration of the flywheel as small as

possible compared to the torque of the bike, it is necessary to do all we can with equipment placing to

keep the torque of the bike as low as possible. Since the torque of the bike is represented by the

equation
 , and our goal is to keep T as small as possible, it is easy to see that to do

this we need to keep the center of gravity and the total mass of the bike as low as possible. Keeping

these goals in mind we placed the battery just above the peddles which is as low as we could reasonably

mount it. For the motor and flywheel placement we were limited by the fact that they needed to stay

together and that if the flywheel was too close to the ground then it would reduce the angle at which

the bike could fall without the flywheel hitting the ground. We therefore chose to mount the motor,

flywheel, and remaining circuitry on a platform above the back tire behind the seat.

7

III. Motor and Power Systems Brett Smith

Motor

After considerable research, we chose a cordless drill motor for our design. We selected

an 18V Bosch drill. This decision was beneficial for several reasons. For one, the drill motor is

powerful. It is capable of spinning up to 1600 RPM and generating 500 in-lbs of torque.

Secondly, it came with two lithium-ion batteries rated at 1.3 Ah so we would never have to wait

on one to charge. Also, the drill came with a quick charger that can fully charge the battery in

30 minutes. Lastly, the drill has forward and reverse functionality built into it (more on that

later). One problem we began to notice in the drill motor was the fact that it was geared. The

motor had two different sections that fit together. The motor by itself was not powerful

enough by itself for our purposes. However, the gears added another wrinkle to or control

system. The transmission had a clutch of some sort that would brake almost instantaneously.

This created a massive amount of unwanted torque. Also, as the drill turned over time, the

motor and transmission sections would become loose and slide apart. For these reasons, we

decided to pursue another motor. Calvin Cutshaw was generous enough to lend us a 24V

motor that was no longer being used by the autonomous lawnmower team. It was rated up to

500W and 4300 RPM. It was much more powerful than the drill motor. It had a much

smoother response when changing directions as well.

8

24V Motor

Motor Controller

 As mentioned earlier, the drill has forward and reverse functionality built into it.

However, after purchasing the drill, we discovered that it has a mechanical switch that allows

for the reverse to be activated. This is undesirable for a couple reasons. Mechanical switching

is much slower than electrical switching. Also, to be able to switch directions in software we

would have to have some sort of actuator to flip the switch which would just overcomplicate

the circuitry. We looked into designing an H-bridge circuit using transistors to allow reversing

the voltage applied to the motor on the fly. This would be a rather cheap and cost effective

method. The problem with this solution is that all the MOSFET transistors we saw had low

current ratings. Our drill has been measured at up to 12 amps. In the end, we settled on a

premade motor controller ordered off the internet. It is rated up to 15 amps (21 amps if a heat

sink is added). This saves us room since it is all contained on a printed circuit board. Plus, it is

very easy to interface with the microcontroller. One of the chips melted on our motor driver

9

during the final week so we had to order a new one. We decided on a Sabertooth 25A motor

controller. This upgrade provided us more cushion to effectively power our new 24V motor.

Sabertooth 2x25 Motor Driver

Wiring

 As far as the wiring of everything, we have mounted most of the components on a

breadboard that sits on a metal mounting plate positioned behind the bike seat. This is the

best option for flexibility. The breadboard is attached to the plate by Velcro for easy removal.

The motor controller, accelerometer, and microcontroller are all wired together on this

breadboard. The 18V battery is mounted to a wooden shelf below the bike seat. We wanted to

power everything with a single battery but still keep the sensitive electronics (microcontroller,

accelerometer, IR sensors) separate from the motor. To accomplish this we acquired a DC/DC

converter. It is capable of converting an 18V to 30V signal into a regulated 5V signal. Since the

motor does draw considerable current, we had to use thicker wires than the 22 gauge used on

the breadboard. The wires inside the drill are 14 gauge. To be on the safe side we went ahead

10

and wired the motor controller to the battery and motor using 12 gauge. To make our lives

easier, we implemented a switch that was mounted on the handlebars. This was used to cut

power to the motor without having to constantly unhook the battery. Later, we also used this

switch as a digital input for calibrating the balance point of our control system. By flipping the

switch at the point that seemed the most balanced, we could set our reference point for the

control system.

Final Version of Bike

18V Lithium Ion Rechargeable Drill Battery

11

IV. Structural Design/Sensors/Wiring Mason Nixon

Structural Design

For the mounting hardware (See Figure 3 CAD below), we decided to use an in-house method

for construction of the primary hardware mounting plate and mounting rods. We came up with the

optimal dimensions for a primary mounting plate by taking into consideration the size of the flywheel

and the amount of hardware we would need room for. Since the plate had to be long enough to space

the flywheel away from the bicycle wheel, it was necessary to add additional supports at the rear of the

bike. Calvin Cutshaw assisted in the cutting and welding of the plate, and we assisted by rethreading the

U-mounts and sought a bicycle seat to fit the seat pipe.

Mounting Plate and Flywheel

Once the plate was fixed and level, we added the solder-less breadboard and the motor. Most of

the mounting we did at this point is meant as a temporary solution, not intended for use on the final

product design. We designed a wooden motor mount to affix the motor to the primary plate. We then

12

used foam and Velcro to attach the solder-less breadboard to the primary plate. The foam is used as a

damper to counter the vibration due to the motor.

We were able to design an electrical schematic in AutoCAD 2009, which allowed for ease of

updates and offered a professional look. On the breadboard itself, using the schematic shown in Figure 4

below, we were able to wire all of our components using minimal space. It was necessary to use two

different batteries because at this time we did not believe it was proficient to design a power system

that would operate off of one power source. We mounted the accelerometer as far from the motor as

we could to minimize the vibration caused by the motor. We also mounted it on the opposite support of

the primary plate for the same goal.

Electrical Hardware Schematic

13

Sensors

Accelerometer

At first, we were utilizing an accelerometer to detect our angular position. For the

accelerometer we decided to use the Memsic 2125, which is a low cost, dual-axis thermal accelerometer

capable of measuring tilt, acceleration, rotation, and vibration with a range of ±2 g. The Atmel

Atmega328 can be paired with this accelerometer to test for an accurate readout and simulation of

operation. The Memsic 2125 has a simple digital interface: two pins (one for each axis) emit pulses

whose duration corresponds to the acceleration of that axis.

Internally, the Memsic 2125 contains a small heater. This heater warms a "bubble" of air within

the device. When gravitational forces act on this bubble it moves. This movement is detected by very

sensitive thermopiles (temperature sensors) and the onboard electronics convert the bubble position

[relative to g-forces] into pulse outputs for the X and Y axis.

The pulse outputs from the Memsic 2125 are set to a 50% duty cycle at 0 g. The duty cycle

changes in proportion to acceleration and can be directly measured by the Atmel. Figure 2 shows the

duty cycle output from the Memsic 2125 and the formula for calculating g force.

14

The T2 duration is calibrated to 10 milliseconds at 25° C (room temperature). Knowing this, we

can convert the formula to the following embedded C code routine as an example:

const int xPin = 2; // X output of the accelerometer
const int yPin = 3; // Y output of the accelerometer
 // variables to read the pulse widths:
 int pulseX, pulseY;
 // variables to contain the resulting accelerations
 int accelerationX, accelerationY;

 // read pulse from x- and y-axes:
 pulseX = pulseIn(xPin,HIGH);
 pulseY = pulseIn(yPin,HIGH);

 accelerationX = ((pulseX / 10) - 500) * 8;
 accelerationY = ((pulseY / 10) - 500) * 8;

In the above code, by dividing the raw pulse input pulseX - Y by 10 milliseconds and subtracting

1000 times 0.5 and then dividing the entire quantity by 1 over 0.125. The accelerationX - Y are in milli-g’s

(Earth’s gravity = 1g. or 1000 milli-g’s).

 z1 = (accelerationX * 9);
 z2 = (accelerationY * 9);

 //Calculate the angle to 2 decimal places by making a long into a float.

 tiltX = (float)z1 / 100.0;
 tiltY = (float)z2 / 100.0;

Since the output from the accelerometer is a number between 0 and 1 which corresponds to 0

to 90 degrees, one can multiply the acceleration calculated by 9 and divide by 100.0 and obtain an angle

15

out to up to 4 digits. The Memsic would have provided suitable resolution for our feedback since the

output is accurate to 1 milli-g and the Atmel Atmega328 microprocessor should provide a simple

interface for implementing our control system.

IR Analog Range Sensors

The problem with the accelerometer is that when we apply a corrective acceleration with our

flywheel, this creates an opposing angular acceleration reading in our accelerometer that could

potentially give us a reading of a position that is inaccurate and cause instability in our control system.

Also, we are limited by the digital PWM output that has a maximum speed of 10ms per reading. These

inadequacies led us to determine that a more suitable sensor would be infrared range sensors. We

decided on the Sharp analog IR GP2D12 range sensor. This sensor takes a continuous distance reading

and returns a corresponding analog voltage proportional to the distance with a range of 10cm (~4") to

80cm (~30").

Placing two of these sensors at the same height and mounting them in fixed positions on the

bicycle, we were able to determine any tilt in the bike by comparing their heights above the ground. If

the bike leaned to one side, then the height reading of the sensor on the side of the tilt would be lower.

Taking the difference of the two heights yields a slope that can be fed into our control system and used

as feedback. This method, illustrated below, provides an effective means of feedback for control and

allowed us to make extremely accurate corrective action. Also, since the sensor is analog, our system

was sped up almost 5 times as fast, since we could read in data at about 2.75ms – limited only by the

Atmel328.

16

Illustration of IR Sensor Concept

It is also illustrated in the code Daniel Golden wrote below:

int sensorValue;

int readIR(int sensor) {

 if (sensor == IR_LEFT){

 // read the value from the left IR sensor:

 ADMUX = _BV(REFS0) | 0; // select channel ADC0

 ADCSRA |= _BV(ADSC); // start the conversion

 loop_until_bit_is_clear(ADCSRA, ADSC);

// wait for conversion to complete

 sensorValue = ADC;

 }else if (sensor == IR_RIGHT){

 // read the value from the right IR sensor:

 ADMUX = _BV(REFS0) | 1; // select channel ADC1

 ADCSRA |= _BV(ADSC); // start the conversion

 loop_until_bit_is_clear(ADCSRA, ADSC);

// wait for conversion to complete

 sensorValue = ADC;

 }

 return sensorValue;

}

irDiff = readIRsmoothed(IR_LEFT, ir_LH_accum, &ir_start_cnt_LH) -

readIRsmoothed(IR_RIGHT, ir_RH_accum, &ir_start_cnt_RH);

// calculate new accelerometer data

controlsys(irDiff, &MotorDutyCycle, &integrator, &lasterror);

// process control system

17

Although a large step above the accelerometer, the infrared range sensor had many potential

disadvantages as well. Of course, the most noteworthy is distortion from other sources of infrared light.

Infrared from sunlight would be the largest potential attenuator, but incandescent lights, remote

controls, and nearly anything that generates heat is a source of infrared radiation and could distort the

bicycle control system. The second disadvantage to this approach is the need for a nearly perfectly lvel

surface. Any discontinuity in the floor or ground that the sensor encounters could cause an otherwise

balanced bike to be pushed to one side, since the control system could read the height difference as the

beginning of a fall.

We were able to gain accurate tilt measurements from the IR sensors, but as noted in the above

paragraph they were far from ideal. Our design could be optimized by a gyroscopic accelerometer, or an

accelerometer that gives position measurements independent of angular acceleration. These sensors

could of have been implemented, but due to time and cost constraints, we were unable to utilize them

in our design.

Moving Average Filter

For smoothing of sensor data, it is necessary to implement a smoothing filter. One such filter

with excellent results is the moving average filter (MAF). The moving average filter accumulates the

inputs and averages them for each new point as described in the following equation:

From which the output, y, may be calculated from the input x and where M is the number of

points averaged by the filter. As an example, in a 3 point moving average filter, point 10, for instance, in

the output signal is given by:

18

The moving average filter is a form of convolution. As noted in The Scientist and Engineer's

Guide to Digital Signal Processing By Steven W. Smith, Ph.D, “You should recognize that the moving

average filter is a convolution using a very simple filter kernel. For example, a 5 point filter has the filter

kernel: …0, 0, 1/5, 1/5, 1/5, 1/5, 1/5, 0, 0…. That is, the moving average filter is a convolution of the

input signal with a rectangular pulse having an area of one.” 2

The listing below shows our program with a 5-point filter that we utilize to implement the

moving average filter.

//Moving Average Filter Implementation for LPF of sensor data

float sensorSmoothed(float accumulator[], int a) {

 int i=0;

 float maf;

 float sum=0;

 for(i=0;i<=3;i++){

 accumulator[i]=accumulator[i+1];

//Shift out the oldest

 }

 accumulator[4]=sensorIn();

//Retrieve most recent noisy data point

 for(i=0;i<=4;i++){

 sum+=accumulator[i]; //Sum of 5 terms

 }

 maf=sum/5; //Average of the 5 data points

 a=a+1; //Increment through first 5 points to initially fill

 if(a<5){

 return sensorIn();

 } //Wait for first 5 points to be accumulated

 else{

 return maf;

 }

}

MAF Noise Reduction vs. Step Response

The moving average filter has an extremely simple implementation. In commenting on this, Dr.

Steven Smith says, “This situation is truly ironic. Not only is the moving average filter very good for many

applications, it is optimal for a common problem, reducing random white noise while keeping the

19

sharpest step response.”2 While our noise is not always random, the MAF is invaluable when trying to

smooth and isolate a sensors data.

The Result of a Signal Filtered with a MAF2

Figure 15-1 demonstrates a MAF filtering a signal. The original noisy signal is show in (a). The

result in the step response as shown in (b) is that the amplitude of the noise is depleted, while at the

same time the edges taper off, which is not the most ideal of situations for a step response. In (c), the M

value is increased by a factor of 5. The step response contains even less noise, but the sharpness in the

edge is nearly lost. Although sharpness is lost, the MAF outperforms all other linear filters as far as

“lowest noise for a given edge sharpness”2. Also, as noted in The Scientist and Engineer's Guide to Digital

Signal Processing, “The amount of noise reduction is equal to the square-root of the number of points in

the average. For example, a 100 point moving average filter reduces the noise by a factor of 10.”2

MAF Frequency Response

The frequency response of an MAF is shown below in Figure 15-2. The MAF frequency response

is simply the Fourier transform of a rectangular pulse as described below:

20

The above equation is for an M-point MAF from which the frequency, f, shifts between 0 and 0.5

and H[f=0]=1. As seen in the figure below, there is very little stopband attenuation and the response has

a slow roll-off. This illustrates a major disadvantage of the MAF: it cannot isolate different bands of

frequencies. To summarize, the moving average is more than adequate as a smoothing filter, however,

as indicated in the frequency response, it is a horrible low pass filter. 2

Frequency Response of MAF2

V. Balancing Control System Theory Daniel Dunbar

The goal of the control system is to balance the bicycle using feedback from the accelerometer

or the IR sensors. This creates a closed loop control system, which is controlled by a PID controller.

There are two inputs into the system, the desired value of zero (a completely balanced system) and the

feedback from either the accelerometer or the IR sensors. We implemented both feedback designs on

one bike. In the future, a common filter may be used to get a more accurate feedback system. These

two inputs are added together to get an error, which is inputted into the PID controller. The output

from the PID controller determines the voltage applied to the motor, which affects the speed and

acceleration of the flywheel, thus balancing the bicycle.

21

To model the control system, SIMULINK was chosen. SIMULINK is a component of the MATLAB

package and is used to build systems from a block component level. This allows the user to create a

complete system within SIMULINK using standard blocks used in control system theory. SIMULINK also

has a PID tuner, which will automatically tune the gains for the P,I, and D parts of the controller. If an

accurate model of the plant can be obtained or designed, this is an extremely effective tool that allows

the user to look at the rise time, overshoot, etc. to find a controller that will suit the application best.

Also, SIMULINK allows the user to model certain components using differential equations. For

example, a DC motor can be broken down to two differential equations:

 and

where KT, IL, R, L, and Kb are parameters of the motor.

From these equations, one can create a model using integrators, adders, and gain blocks. Thus,

is on can obtain the motor parameters, one can create an accurate model of a motor within MATLAB

and use the computational power of the program to do some useful analysis.

22

 To model the control system initially in SIMULINK, an external simulated input had to be

created. This input represents the external forces on the bicycle, such as a person leaning or simply

gravity working on the system. This was added to the force created by the angular velocity of the motor

to create the feedback portion of the system, which will be actualized by either the accelerometer or the

IR sensors in the physical system. For the external input, several different patterns were created to try

to accurately simulate some forces that might occur during physical testing.

 In transition to the implementation phase of the control system, the original plan was to use

MATLAB’s built in Embedded C writer to write the code for the control system. However, when we tried

this, the code was much too convoluted to be able to fine tune away from MATLAB, so we wrote the

code ourselves. The SIMULINK model was not done in vain, though, because we are using it as a

theoretical basis for our control system, and we are working to develop an accurate transfer function

23

that lines up with our actual motor under load. When we achieve this, we will be able to use the

SIMULINK model to tune the control system to optimize performance.

 In tuning the control system, we realized that having to reprogram the microcontroller for any

slight change in our constants was not only time consuming and tedious, but it also did not allow us to

see immediate changes. To fix this problem we connected three potentiometers to our

microcontroller’s analog inputs. The pots acted as voltage dividers into the input, so we could vary the

amount of voltage going into the input. This enabled us to read in different values in real time which we

made correspond to the KP, KI, and KD values, so we could tune our control system in real time instead of

reprogramming the microcontroller every time we wanted to adjust a gain constant.

 The code, as seen as ControlSystem.c on the CD, was built as a function called from the main

program. This allows the program to be modularized for ease of reading and helps in the debug process.

Also, the KP, KD, and KI constants are at the top for easy access when tuning the control system. We

made several changes from the Cycle 1 code. First, we added a calibration feature to calibrate our

desired value to make up for misalignment of our sensors. Second, we added the IR sensor portion of

the control system; when we used the IR sensors, we had to completely change our gain constant values

because our input to the control system was different. Next, we added the potentiometer tuning

system. Finally, we added pre-compiler if-statements to change between the accelerometer control

system and the IR control system depending on define statements found elsewhere in the program.

VI. Embedded System Architecture Daniel Golden

Previously, our architecture was designed for using an accelerometer as our control

system feedback. As already explained, this was problematic since our accelerometer does not

isolate dynamic acceleration of motor and bike from the static acceleration of gravity. So, for

24

our second generation balancing system, we incorporated a control loop which reads Infrared

sensor data from two sensors, smoothes the data, sends the difference of that data to the

control system, and then sets a new corrective Duty Cycle and direction pin for use by our

motor controller. This second generation control loop is shown in Figure 1 below.

Set Motor Duty

Cycle

Set Motor

Direction Pin

Start

Pass Difference to

Control system

CONTROL

SYSTEM

Get new Duty

Cycle from Control

System

Get new Duty

Cycle from Control

System

LEFT

INFRARED

SENSOR

FILTER

Get filtered IR

sensor distances

Initialize hardware

Calculate Their

Difference

RIGHT

INFRARED

SENSOR

FILTER

Figure 1 - Embedded System Control Loop

Infrared Distance Filter

Both the left and the right infrared sensor filters are of the moving average type. The

filter smoothes N points. N can be changed by changing the following line in the code in

“includes.h”:

 #define MAFSIZE 12 // size of the moving average filters

25

Control System

To execute the second generation control system we chose to simply encapsulate the

entire system into a function that takes four arguments.

 controlsys(int IRdiff,

 int *MotorDutyCycle,

 float *integrator,

 float *lasterror)

The first is the difference of the two IR sensors and the other three are pointers to

variables in the calling method’s scope which are updated by the control system function.

Hardware Initialization

In our first generation system, we were implementing an accelerometer. However, since we

are no longer using it, we have no need to remove the PWN measurement ability. On the other hand,

our infrared sensors are using the analog inputs into our microcontroller. Therefore, to use these pins,

we must set up our microcontroller’s registers to perform this action.

Hardware Initalization Routine:
 /* Set up timer0 for motor control */
 TCCR0A |= _BV(COM0A1); // inverted pwm outputs
 TCCR0A |= _BV(WGM01) | _BV(WGM00); // Phase correct mode - ICR0 is top
 TCCR0B |= _BV(CS01); // prescale F_CLK_IO by 8

/* Set analog inputs for reading IR sensors. */
 ADCSRA |= _BV(ADPS2)|_BV(ADPS1)|_BV(ADPS0); // ADC prescale factor is 128
 DIDR1 |= _BV(AIN1D) | _BV(AIN0D); // disable digital input buffers on ADC pins
 ADCSRA |= _BV(ADEN); // enable ADC conversions
 ADMUX |= _BV(REFS0); // AVCC with external capacitor at AREF pin

 /* Set up pin 6 for motor controller PWM output. */
 DDRD |= _BV(PD6); //Set PD6 for output
 PORTD |= _BV(PD6); //Set PD6 to Output High

26

Main Program Loop

The main program loop is the first code to execute on system power-on. This loop calls

the hardware initialization routine, enables interrupts, and then enters the infinite control loop:

int main(){

 hardwareInit(); // initialize hardware
 _delay_ms(50);

sei(); // enable interrupts

 for(;;){// infinite program loop
 /* calculate new IR difference */

irDiff = readIRsmoothed(IR_LEFT, ir_LH_accum, &ir_start_cnt_LH) –
readIRsmoothed(IR_RIGHT, ir_RH_accum, &ir_start_cnt_RH);

 /* process control system */

controlsys(irDiff, &MotorDutyCycle, &integrator, &lasterror);
 OCR0A = MotorDutyCycle; // set the output PWM
 }
 return 0;
}

Motor Control

In order to control the speed of our motor, we are generating a PWM signal using the 8-

bit PWM mode of timer0. To adjust the motor’s speed and direction, we write a number

between 0 and 255 to OCR0A where 127 is the midpoint where the motor is stopped. The

maximum motor speeds for both directions are obtained by writing either a 0 or a 255 to

OCR0A. In other words, writing a value of 0 produces a duty cycle of 100% in one direction.

Writing a value of 0xFF to OCR0A generates a duty cycle of 100% in the other direction.

27

VII. Administration Daniel Golden

Budget

Item Price

Batteries/Charger $153.49

Motor $60.00*

Flywheel $100.00*

Bike $50.00*

Microcontroller $29.99

Motor Controller $124.99

Mounting Hardware $100.00*

IR Sensors/Accelerometer $60.89

Developmental Costs $30.00*

Total $709.36

Timeline

For timeline creation, we used Microsoft Project. Project has a Gantt Chart tool, which allowed

us to orderly schedule tasks – ultimately streamlining the design process. The following figure

is an example of our timeline:

28

Organization

For source control organization and versioning, we chose to use Subversion. Our subversion

host is ProjectLocker and our client software is TortoiseSVN. Both are free services, and work

together to give us the ability to maintain our code on external servers and to revise or review

our code remotely on multiple computers. The following are screenshots of the website

services.

Redmine – Content Management System

In order to facilitate organization, we decided to use a content management system called

Redmine. There are several advantages to this system including issue tracking, revision control,

Gantt chart, wiki, news, activity feed, activity notifications, and resource management. The

following is a screenshot of our content management system:

29

Communication

 For technical related communication our primary method was via Redmine. Redmine

allowed us to chat about each issue separately from other issues – which is very important

when there are multiple tasks being performed simultaneously. It also helps every person on

the team to know what is going on.

A secondary mode of communication was via email. Our email address is

aurascl@googlegroups.com. However, this mode of communication was almost solely for use

to remind all members of meetings and coordinate scheduling.

VIII. Conclusion

To summarize, we propose to create a balance-assist for a bicycle that can be used on

any standard bike. The applications are in learning to ride a bike, aiding the disabled, and aiding

the elderly. Using control systems theory, we will mount a flywheel to a reversible motor,

mailto:aurascl@googlegroups.com

30

feedback accelerometer angle data into our control system, and output compensated motor

commands to correct for the lean associated with a falling bike. Our design encompasses many

aspects of engineering, primarily those listed in the senior design requirement as defined by

Accreditation Board for Engineering and Technology (ABET).

IX. Appendix

Contributions

 We all contributed to this project in many different areas. Below, we will list the main items that

were worked on and by whom:

Daniel Dunbar – Daniel led the Control System design aspect of the project. He also worked on

debugging the integration with the microcontroller, flywheel design, debugging the dc-to-dc converter,

wiring the circuits, and various presentations of the project.

Daniel Golden – Golden Dan was the project manager for the whole project and did most of the

management work scheduling meetings, forming agendas, etc. He also led in the microcontroller

integration aspect of the project, including implementation code for the IR sensors. He also helped in

flywheel design, control system tuning, motor acquisition, and poster design.

Mason Nixon – Mason led the sensor design aspect of the process, deciding on both the accelerometer

and IR sensors we used and writing preliminary code to implement them. He also led in procuring a dc-

to-dc converter, making a schematic of the wiring, wiring the circuits, and structure design. He helped in

flywheel design, poster assembly, and access to tools found in the SPARC lab.

31

Brett Smith – Brett led in purchasing, documentation, such as weekly status reports and Cycle 1 and 2

binders, and power system design, including batteries, motors, and motor controllers. He helped in

flywheel design, wiring the circuits, tuning the control system, structure design, and poster design.

Bryan Wall – Bryan led in mechanical design and flywheel design. He also helped in control system

tuning, structure design, wiring the circuits, debugging power system and coding, and PowerPoint

compilation.

 Every member of this team played a big part in the overall project and had a hand in most, if not

all, of the aspects, whether in the design phase or the implementation phase or both. Thus, the list

above should not be taken as an exhaustive list of the effort of our team as a whole.

Acknowledgements

 Special thanks go out to several people who made this project possible. Calvin Cutshaw

and Linda Barresi were very helpful in turning our ideas for the bike into a reality. They were

immensely helpful in attaching the mounting plate to the bike and devising methods of securing

the motors to the plate. Daniel Golden’s brother, David Golden, is an Industrial Design student.

He designed our flywheels in Adobe Illustrator and had them made using a laser cutter. Last

but not least we would like to recognize Mr. and Mrs. Stringfellow for their gracious monetary

donation to our project.

